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1.1 Introduction to Bayesian inference: some simple examples

• Models encode our assumptions about how data was generate. Sometimes we want to incorporate vague
information, such as “the function describing my data is very smooth and changes roughly on a time-scale

of 5 hours”. Or, we might want to include many predictors, but to avoid overfitting penalize high values of

the predictors. For example, we might believe there is an interaction term, but suspect it is much smaller

than the additive terms. This motivates a different approach to statistics, one which treats parameters

as themselves random variables.

Example 1 (Bernoulli with priors). Consider the model

X ∼ Bernoullli(q)

An implicit assumption we have made when we fit this model, is that before we see any data, each

value of q is equally likely. To make this more explicit, we can write

X|q ∼ Bernoullli(q)
q ∼ Uniform(0, 1)

Another way to think about constructing an estimator of q, is that given data points X1, . . . , XN , we

would like to know

q̂b = E[q|X1, . . . , XN ] (1)

We can in principle solve this problem using Bayes’ theorem. In fact, we would also take it a step

further and ask: What is the distribution of

q|X1, . . . , XN

Is turns out that this has a relatively simple form, called a β-distribution. We say

q ∼ Beta(a, b)

if q is a random variable on [0, 1] which has density

f (q) = Bqa−1(1− q)b−1

The constant B ensures the area under this curve between q = 0 and q = 1 is indeed one, as it

must be for a random density.

Question: Show that

q|X1, . . . , XN ∼ Beta(Y + 1, N − Y + 1)
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Solution: Using Bayes’ theorem

f (q|Y ) =
P (Y |q)f (q)
P (Y )

=
1

P (Y )

(
N

Y

)
qY (1− q)N−Y

Since we are thinking of this as a probability density in q, we don’t actually need to compute P (Y )

explicitly (even though we could), instead, we can simply notice that

f (q|Y ) = CqY (1− q)N−Y

for some constant of proportionality C which will depend on Y , but is uniquely determined by the

fact that the area under this curve must be 1. In the colab notebook we plot this curve.

• To summarize the idea of Bayesian inference, If D is a our data and θ is our parameter(s) Bayes’ theorem
tells us that

P (θ|D) =
P (D|θ)P (θ)
P (D)

(2)

• The distributions appearing in Equation (2) have the following names and interpretations:

– P (θ|D) is the posterior (a beta distribution in Example 1).
– P (D|θ) is the likelihood (Binomial distribution in Example 1).
– P (θ) is the prior distribution (Uniform distribution in Example 1)

– P (D) is the evidence. It represents the chance we observe the data unconditional on the parameters.

This can be obtained by marginalizing over the priors.

While in classical statistics, the objective is to determine (estimate) a parameter θ, in Bayesian statis-

tics our objective is to compute the posteior distribution. Once we have this, we can obtain so-called

point estimates, for example, by taking the average of θ or maximum of P (θ|D) (maximum likelihood).

• The beta distribution will play an important role in what follows, so we note that if

q ∼ Beta(a, b)

then (using calculus) it can be shown that

E[q] =
a

a + b

var(q) =
ab

(a + b)2(a + b + 1)
.

Notice that this implies the estimator q̂b in Equation 1 becomes

q̂b =
Y + 1

Y + 1 + N − Y + 1 =
Y + 1

N + 2

This is in-fact the estimator q̂L from the week 7 exercise set!

• The mode – the value which maximizes the probability density – for the β-distribution is

a − 1
a + b − 2

We can see that the estimator q̂ = Y/N comes comes from the mode f (q|Y ) – recall that such an
estimator is called the maximum likelihood estimator.
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• A very important observation, which is what the problem on the week 7 exercise set is all about, is that
adding priors often has the effect of introducing a bias while reducing the variance.

• Another important feature of the β distribution is that when a and b are very large, it is approximately
Normal with this mean and variance. This means we can get a rough idea of the probabilities for a

β random variable. Equipped with this knowledge, we can try to go beyond the case where our prior

assumption about the distribution of q, before fitting the model, is Uniform.

Example 2 (Selecting priors). Suppose we are given a coin. We are trying to determine whether it

is biased based on the outcome of N flips. We are pretty sure that, like most coins, it is not biased.

To be precise, let’s say you are 95% confident that the bias of the coin is less than 10% biased

towards heads or tails.

Question:

(a) Select a prior distribution for q.

(b) What is the posterior expectation if we flip the coin 5 times and see 5 heads?

Solution:

(a) We know that a β-distribution is approximately Normal if a and b are large enough. Assuming

we can make a Normal approximation, we can use the formulas for the mean and variance of

the b distribution to select parameters such that

P (|q − 0.5| < 0.1) = P (0.4 < q < 0.6) ≈ 0.95 (3)

Since we would like the mean of our prior distribution to be 1/2, we select

q ∼ Beta(a, a).

If q is approximately Normal, then Equation 3 will hold when

1.96
√
var(q) = 0.1

=⇒

√
a2

4a2(2a + 1)
=
1

2

√
1

2a + 1
=
0.1

1.6

=⇒ a ≈ 31.5

(b) In order to compute the posterior, we use Bayes’ theorem

f (q|X1, . . . , XN) ∝ qY (1− q)N−Y × qa−1(1− q)a−1 = qY+a−1(1− q)N−Y+a−1

where Y =
∑N
i=1Xi . Again, the q dependence uniquely determines the distribution, since the

area under this curve must be one. We can therefore say that

q|X1, . . . , XN ∼ Beta(Y + a, N − Y + a)

For the mean and variance we have

E[q|X1, . . . , XN ] =
Y + a

N + 2a
=

5 + 31.5

5 + 2× 31.5 ≈ 0.54

Note that if we used usual estimator we would have found q̂ = 1, while if we used uniform

priors and taken the posterior expectation q̂L = 0.85. Yet another approach would be to take

the posterior maximum (the mode) of the posterior in using the β-distribution priors.
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• Something quite nice about using β-distribution priors for the Bernoulli model is that BOTH the prior and
the posterior have a β-distribution, albeit with difference parameters. In general, when this is the case we

say that the priors are conjugate.

Example 3 (Bayesian inference with a Normal distribution). Suppose we have a Normal model for Y

Y |(µ, σ) ∼ Normal(µ, σ).

Assume that σ is known and take our priors on µ to be

µ ∼ Normal(µ0, σµ)

Question: What is the posterior distribution of µ?

Solution: The likelihood is

p(D|θ) =
∏
i

1√
2σ2π

e−(Yi−µ)
2/2σ2

=
1

(2σ2π)N/2
e−

∑
i (Yi−µ)2/2σ2

The posterior is proportional to

p(D|θ)p(θ) =
1

(2σ2π)N/2
e−

∑
i (Yi−µ)2/2σ2 1√

2πσ2µ

e−(µ−µ0)
2/2σ2µ

=
1

(2σ2π)N/2
1√
2πσ2µ

e−
∑
i (Yi−µ)2/2σ2−(µ−µ0)2/2σ2µ

On this surface this looks a bit complicated as a function of µ, but there is a trick: Notice that all

the dependence on µ comes from the exponent. We can rewrite this as

Aµ2 + Bµ+ C

where

A =
1

2

(
N

σ2
+
1

σ2µ

)
B = −

∑
i Yi
σ2

−
µ0
σ2µ

C =

∑
i Y
2
i

2σ2
+
µ20
σ2µ

If we factor this quadratic equation, we find that is can be written

A(µ− B/2A)2 + const.

We don’t care what the constant terms is, since the it is the first term which tells us the mean and

standard deviation of µ. Now observe that

−
B

2A
= Ȳ

σ2µ
σ2µ + σ

2/N
+ µ0

σ2/N

σ2µ + σ
2/N

≡ µb

and
1

A
= 2

σ2µσ
2/N

σ2µ + σ
2/N

≡ 2σ2b

In particular, we can deduce that

µ|D ∼ Normal (µb, σb)
where µb and σ

2
b defined above are the mean and variance of the posterior distribution.
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• Importantly, for the Normal distribution the mean and mode are the same, so there is really only one
choice for the point estimate of a parameter which has a Normal posterior.

1.2 Bayesian inference for linear regression models

• We now discuss Bayesian inference for the general linear regression model with features. Let

f (x) =

K∑
i=1

βiφi(x)

and suppose that our priors are

βi ∼ Normal(0, τ2i ).

We will assume that E[φi(X)] = 0. We will also assume, for simplicity, that σ is known. Hence, we do

not need to consider estimating it. This simplifies the conceptual picture considerably.

• In this case, the Posterior distribution of the βi can be understood analytically. It turns out that the
marginal posterior distribution of each βi is again Normal – thus Normal priors on βi are conjugate priors!.

The marginal mean of each βi are determined by the system of questions given in the following Theorem.

Theorem 1 (Posterior mean for regression coefficients). Define aK×K matrixΩ called the empirical covariance matrix
which has entries

Ωi ,j = Nφi(X)φj(X) =

N∑
k=1

N∑
z=1

φi(Xk)φj(Xz)

and let β̄i denote the posterior mean of βi ; that is,

β̄i = E[βi |D].

Then β̄1, . . . , β̄K satisfy the K equations(
σ

τi

)2
β̄i +

K∑
j=1

Ωi ,j β̄j =

N∑
j=1

φi(Xj)Yj (4)

We make a few remarks on this Theorem:

– If N > K, then β̄i actually have a solution. In-fact, depending on Ω, there may not be a solution.

For our discussion, we will assume there is however.

– Under the assumption that E[φi(X)] = 0, the entries of Ωi ,j approximate the covariances between

the predictor features. Moreover, if we take the predictors to be drawn from some distribution and

average over the data (both X and Y ), we get

E[Ωi ,j ]

N
= cov(φj(X), φi(X)).

and

1

N

N∑
j=1

E[φi(Xj)Yj ] = cov(Y, φi(X)).

Hence, we have the “math world” version of Equations 4, which is obtained by averaging over the

data:

1

N

(
σ

τi

)2
E[β̄i ] +

K∑
j=1

cov(φi(X), φj(X))E[β̄j ] = cov(Y, φi(X)).
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In the limit N → ∞ and with K = 2, we obtain a system of equations recognizable from Week
5 notes for the regression coefficients in the two predictor model in terms of the covariances. In

this context, the role of the regression coefficients (which we previously took to be fixed numbers),

is now played by the averages E[β̄j ], which are the average values of βj with respect to both the

posterior and the data.

– Notice that the first term in Equation 4 vanishes as either τi →∞ (very broad priors) or σ → 0 (no
variance in Y conditional on the predictors). In both cases, the vales of β̄i are entirely determined

by the data, and the priors play no role. When τi → 0 or σ → ∞, the priors entirely determine
determine β̄i and in fact β̄i = 0.

– The first term in Equation 4 is an example regularization.

• Theorem 1 can be elegantly stated using matrices (see Linear algebra review note for intro to matrix
multiplication). This is import if we want to implement these computations in Python. Observe that one

way to construct Ωi ,j is to define the matrices

A =


∣∣ ∣∣ ∣∣

φ1(X) φ2(X) · · · φK(X)∣∣ ∣∣ ∣∣
 , Λ0 =


τ1 0 . . . 0

0 τ2 . . . 0
...
...
. . .

...

0 0 . . . τK


Then Ω = ATA. Now define another matrix K ×K matrix

M = Ω+ σ2Λ−10

Then Equations 4 can be written as

Mβ̄ = AT y

where β̄ and y are respectively a K-vector and N-vector

β̄ =

 β̄1...
β̄K

 , y =

 Y1...
YN

 .
Then β̄ satisfies

Mβ̄ = AT y =⇒ β̄ =
(
ATA+ σ2Λ−10

)−1
AT y

Example 4 (Calculating posterior mean in python). Consider the model with two predictors:

f (x) = β1X1 + β2X2

Question: Generate some simulated data and compute the posterior means of β for different choices

of τ .

Solution: See colab notebook.

1.2.1 Posterior prediction

• We will mostly focus on how we can use the posterior estimates to make predictions, although there is an
entirely different set of questions we could ask concerning model assessment and hypothesis testing.Recall

that ŷ(x,D) is defined as our prediction, using the regression model fitted to the dataD, of E[Y |X = x ]. In
the Bayesian context, we can define the posterior predictive variable Y |X,D as the random representing
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the distribution of our response variable conditioned on the data. We can obtain this distribution by

replacing the βis in

Y =

K∑
i=1

βiφi(X)

with samples from the posterior distribution. In the Bayesian framework we set

ŷ(x,D) = E[Y |D,X] =
K∑
i=1

E[βi |D]φi(X) =
K∑
i=1

β̄iφi(X)

We can write this in matrix notation by defining the vector

a =

 φ1(X)...
φK(X)

 .
Then

ŷ(x,D) = aT β̄ = aTM−1AT y (5)

Example 5 (Posterior predictions for a regression model). Take the Fourier model

f (x) = β0 +

K∑
i=1

βi sin

(
2πix

L

)
+ αi cos

(
2πix

L

)
.

Implement a function to compute posterior predictions with different priors τ on the coefficients. In

this example, we will fit this model to data generated by adding noise to the function

ftrue(x) = sin(2π3x) + 5 sin(2π6x
2) + 20x2

with x ∈ [0, 1]. Note that forK <∞, we can not pick any values of the βis and αis such that f = ftrue.

We will assume that βi and αi have the same prior distribution:

βi ∼ Normal(0, τi)
αi ∼ Normal(0, τi)

Question: Compute the posterior mean ŷ(x,D) for the following choices of priors and K = 50.

(a) All τi are the same, τi = τ0.

(b) The τi decay with i as τi = τ0/i

In each case, experiment with different choices of τ0 and pay attention to whether the model is

overfitting (high variance, low bias) or under fitting (low variance, high bias).

Solution: See colab notebook.
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1.3 Regularization view of priors

• Recall that in standard least squares linear regression, the regression coefficients come from minimizing
the sum of squared residuals. That is, they are the values that minimize the function

L(β) =

N∑
j=1

(ŷ(Xj , D)− Yj)2

This is an example of a loss function, which is simply something we want to minimize to solve our inference

problem. This means that the derivative of L with respect to each βi is zero.

∂

∂βi
L(β) =

N∑
z=1

2(ŷ(Xz , D)− Yz)
∂

∂βi
ŷ(Xj , D)

=

N∑
z=1

2(ŷ(Xz , D)− Yz)φi(Xz)

= 2

N∑
z=1

K∑
j=1

βjφi(Xz)φj(Xz)− 2
N∑
z=1

Yzφi(Xz)

= 2

K∑
z=1

βj

N∑
z=1

φi(Xz)φj(Xz)− 2
N∑
z=1

Yzφi(Xz)

= 2

K∑
j=1

βjΩi ,j − 2
N∑
z=1

Yzφi(Xz)

Setting
∂

∂βi
L(β) = 0

leads to Equation 4 without the prior term.

• The regularization view of Equation 4 is that, instead of thinking of the additional term as coming from
priors, we think about adding a term to our loss function which penalizes models with too much flexibility.

A common choice is

L(β) =

N∑
j=1

(ŷ(Xj , D)− Yj)2 + λ
K∑
j=1

β2j

This is called ridge regression and λ is a parameter controlling how large a penalty we place on large

values of βj . If you compute the partial derivatives and equate it to zero, you will find that the equations

βj satisfy are exactly Equation 4 with σ/τi =
√
λ. More generally, we could use the loss function

L(β) =

N∑
j=1

(ŷ(Xj , D)− Yj)2 +
K∑
j=1

(
σ

τi

)2
β2j

we would obtain exactly Equation 4.

1.4 The kernel trick

• The problem of computing ŷ(x,D) is an example of smoothing, or interpolating. Smoothing refers to the
situation where we are given noisy measurements of a function f (x) and want to “smooth out the noise”.

One way to do this is take the weighted averaging of neighboring values of y . This following examples

illustrates how regression modeling is related to smoothing.
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Example 6 (Orthogonal empirical covariance matrix). Consider the special case where the empirical

covariance matrix is diagonal – that is, Ωi ,j = 1 if i = j and 0 if i ̸= j . Recall that this is the case
when we use the fourier model and the Xi are equally spaced.

Question:

(a) Write down a formula for ŷ(x,D) in this case. In particular, show how to express ŷ(x,D) in

the form

ŷ(x,D) =

N∑
j=1

Yjκ(x,Xj) (6)

for some function κ(x, x ′).

(b) What does this function κ(x, x ′) look like when f (x) is a Fourier model?

Solution:

(a) In this case,

β̄i =
1

1 +
(
σ
τi

)2 N∑
j=1

φi(Xj)Yj

and hence

ŷ(x,D) =

K∑
i=1

φi(x)

1 +
(
σ
τi

)2 N∑
j=1

φi(Xj)Yj

=

N∑
j=1

Yj

 K∑
i=1

φi(x)

1 +
(
σ
τi

)2φi(Xj)


so

κ(x, x ′) =

K∑
i=1

φi(x)φi(x
′)

1 +
(
σ
τi

)2
(b) For the Fourier model with L = 1,

κ(x, x ′) =

K∑
i=1

sin(2πix) sin(2πix ′) + cos(2πix) cos(2πix ′)

1 +
(
σ
τi

)2
Using the identity

cos(x) cos(y) + sin(x) sin(y) = cos(x − y)

and the fact that cos(x − y) = cos(y − x), we get can rewrite this as

κ(x, x ′) = η(|x − x ′|) =
K∑
i=1

cos(2πi |x − x ′|)

1 +
(
σ
τi

)2

• We actually don’t need the empirical covariance matrix to be diagonal to “kernalize” our predictions
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(meaning express ŷ(x,D) in the form of Equation 6. Equation 5 also has this form, although we can not

determine the kernel without inverting a very large matrix.
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