Unit 5: Interactions and other feature maps

Ethan Levien

September 13, 2025

Contents
5.1 Interactions terms in linear regression models
5.1.1 Interactions as new predictors . . . . . . . . L 1
5.1.2 Residual plots . . . . . . . 3
5.2 Other feature maps 5
5.3 Cross validation 6
5.4 Overfitting 7
5.5 Orthogonality and Fourier analysis 8
5.6 Exercises 12

5.1 Interactions terms in linear regression models

5.1.1 Interactions as new predictors

The important assumption of the multiple predictor regression models we have seen so far is that the “effect” of
one predictor does not depend on the value of the other. Here are some examples where this could be violated:

e The difference in test scores between kids whose mothers did and and did not go to high school depends
on their mother’s score on the iq test.

e The association between earnings and height depends on gender, e.g. being taller tends to give men a
larger advantage than women

e The effect of a drug for treating covid depends on whether someone has had covid before.

We call the dependencies described above interactions. It turns out it is possible to include interactions within
the regression modeling framework we have already introduced, as is illustrated by the following example. Let's
work in the case of two predictors. If you'd like, you can refer to Example 2 to make this math more concrete
and always replace X; with Xps and X> with Xjq. In each of the cases above, what is going on is that the
slope of E[Y'| X1, X3] vs. X; for fixed X5 is not a constant, 31, but rather something that depends on X5. The
simplest way to account for this is to let effect of X, on the slope be linear in X5, so instead of B; being the
slope of E[Y| X1, X2] vs. X1 we would have 31 + (12X be this slope, but this leads to a regression model with
a nonlinear term:

Y = B0+ (81 + B12X2) X1 + BoXo = Lo + L1 X1 + BaXo + B12X1 X2 + €

We call X; X5 an interaction term, but Yuck! This isn't linear anymore and the regression coefficients are also
don’t have the same interpretation. How do we deal with this? The idea is that we can create a new predictor



from our already existing predictors which accounts for the interactions. To this end, consider the two predictor
regression model written now as
Y =By +B1X1 + 65Xz + €.

I'm again using the ’ to distinguish this model from an expanded model with a new predictor. The new predictor
which accounts for the interaction will be X3 = X1 X5! Note that X3 is going to be correlated with both X;
and X5, but crucially it will not be perfectly correlated unless X; and X5 are with each other. The new mode is

Y =Bo + B1X1 + BoXo +B12X3 + €
Or written as a conditional distribution
Y|X ~ Normal(ﬁo + B1 X1 + BaXo 4+ B1,2X5, 0'2).

Now how do we interpret the regression coefficients in the new model? If we write out the usual formula for
the regression coefficient with no interactions, we get

E[Y|X1 =X+ 1, X2] — E[Y‘Xl = X, XQ]
= (,6’1(X + 1) + B> X5 Jr,@g(X + 1)X2) — (,61X + B> X5 +,61,2XX2)
=1 + B12X2

Here I've replaced X3 with X1 X5. | words, B; 2 is the additional difference in the regression slope between Y
and X3 with all other predictors fixed when X5 is changed by one unit. If 315 is positive (resp. negative) then
increasing X, has a tendency to increase (resp. decrease) the difference between the conditional averages of Y/,
thus, the additional predictor X3 = X;X5 allows us to capture an interaction wherein the association between
X1 and Y depends on X,. We can do the same calculation with X; fixed and X5 changed to obtain

E[Y[X; = x+ 1, Xo] = E[Y|X1 = x, Xa] = B2 + 83X

Now as always, let's make sure we understand how this translates into code and also | think the visualizations

in this example are helpful.

( )
Example 1 (Visualizing interactions). Consider the regression model with interactions term X3 = X1 X5
defined above, assuming that

X1 ~ Normal(0, 1)
X ~ Bernoulli(1/2)

Assume B; = 1.2,8, =0 and B3 = —1.

Question: What are the slopes of E[Y|X1, Xo = 0] vs. X3 and E[Y|X1, Xo = 1] vs. X1? Plot these in
colab.

|\ J

( )
Example 2 (Interaction in test score model). Here we once again consider the test score data with high
school education and IQ as predictors. In particular, we will fit the model

Y = 60 +5thhs + ﬁiniq +,Biq,thinhs
Question:
(a) What are the values and interpretations of the regression coefficients in the new model?

(b) What do the results tell us about the “effect” of IQ on test scores and how it is related to high
school education?




Solutions: The output of statsmodels is

> coef std err t P>|t]| [0.025 0.975]
S
> const -11.4820 13.758 -0.835 0.404 =& . 523! 15.559
> mom_hs 51.2682 15.338 3.343 0.001 21.122 81.414
> mom_1iq 0.9689 0.148 6.531 0.000 0.677 1.260
> hs_iq -0.4843 0.162 -2.985 0.003 -0.803 -0.165

(a) The values and interpretations are as follows

e (5o~ —11 does not have a clear interpretation since it doesn’t make sense to have 0 1Q.

e [(Biq = 1 is the expected signed difference in scores between students whose 1Q differs by 1 point
and whose mothers did not go to high school.

e [Ohs = 51 is the expected difference between scores of students whose mothers did and did not
go to high school when IQ is zero — much like 3y, this doesn’t really make sense, so we
don’t have a clear interpretation of 5

® Bhsiq = —0.5 is the expected increase between the group of students whose mothers attended
high school and those that did not in the difference between test scores of students whose
mothers iq differs by one point. In other words, it is the increase in regression slope of scores vs.
iq between the two high school groups. It is easier to interpret Giq + Bhs,iq Which is the expected
signed difference in scores between students whose |Q differs by 1 point and whose mothers did
attend high school (this is the same as the interpretation of Biq for student’s whose mothers
attended high school.

e |t appears that the association between IQ and test scores is weaker among students whose
mother's attended high school. This makes intuitive sense. If someone attended high school
the subtle differences in cognitive ability that IQ is supposed to measure are not as relevant.

& J

In the example above we saw that adding an interaction term can make the interpretation of the regression
coefficients a bit clunky, even those regression coefficients that are not involved in an interaction. In particular,
we ran into the problem that the interpretation of Gi; was lost. To remedy this, we can define the centered
predictor

Aiq = Xiq — )_<iq
and now we fit the model
Y = Bo + BhsXns + BigAiq + Brs—iq Xnsliq + €

Now B has the interpretation as the average difference in scores among students whose mothers have the
average igq. You can also standardize the predictor to get around the awkward interpretation of the regression
coefficients.

5.1.2 Residual plots

We address the question of how we might identify when it is appropriate to add an interaction term to a model.
In this case of two predictors we can easily visualize the data by making plots of the Y vs. X; slopes for different
X values (especially when one predictor is binary). With many predictors, it becomes less clear what plot might
reveal some hidden interaction terms. We could of course go on adding every possible interaction term, but
with many predictors this becomes in practical and leads to overfitting (as we will soon discuss). The basic



idea of residual plots is that by plotting the difference between the observed y values and the prediction of the
E[Y|X], or

K
=Y —Bo— ZBka,j
K

where X is the value of predictor i at the jth data point. Our goal is to plot € in a such a way that
disagreement between our model and the data is revealed by this plot. In the instance of a single-predictor, we
can simply plot €; as a function of the predictor X. If we notice that the residuals do not appear to follow a
normal distribution, or that the variance and mean change, then we should be skeptical. The question is: When
we have multiple predictors, what do we plot on the horizontal axis? The answer is to plot ¢; as a function
of the predictors value of E[Y|X]; thatis ¢j vs. ¥ = Z,KB,X,;J'. The following examples is supposed to help us
understand why.

e
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Figure 1: Correct and incorrect way to plot residuals against response variable

( )\
Example 3 (Residual plots). Consider the regression model with two predictors and suppose the true
parameter values are Bp = 0,6; = 0.2,8, =20 and 0 = 1.

Question: Compare two ways of plotting the residuals
(a) Plot €; as a function of Zfﬁka,,'.
(b) Plot €; as a function of Y;. Why does there appear to be a bias towards high values of ¢; for large Y;

that is not present in the first plot?

Solution: See colab notebook



https://colab.research.google.com/drive/1UTUUfWTpmazSa40sqLUWAojRi2kGJM-O?usp=sharing

To better understand what the residual plot tells us, recall

Ej%\g-—E[YKXl ..... XK) = (Xl,j ..... XK’J')] (1)

~Bo+3% BiX
where K is the number of predictors. Thus, the distribution of ¢; is approximately
¢; ~ Normal(0, 02).

This tells us how the points should be distributed in the vertical direction. It does not say anything about
the distribution of points in the horizontal direction, which is determined by the distribution of the predictors.
Therefore, we expect a plot which is symmetric around the line ¢€; for all values of y; (our predicted values of
Y'), but any distribution in the horizontal direction is okay.

Now compare this to what would happen if we plotted Y; on the horizontal axis, not y;. In this case, based
on Equation 1 €; and Y] are correlated. This is why we see a bias of the residuals for small/large Yj in Example
3.

5.2 Other feature maps

Here, we discuss how to build more complex models and directly access their predictive power on out-of-sample
data. In the context of interactions, we already saw how a model can be extended by defining a new predictor
Xz = X1X5. The more general idea that we can define a new predictor which is a function of the other
predictors allows us to develop very complex and flexible models which nonetheless can be analyzed within linear
regression framework. Here, we will formalize this, beginning with the case of a single predictor.

In general, the linear regression framework allows us to fit models of the form consider the model

Y|X ~ Normal(f(X), 0?) (2)

provided we can express f(X) as a linear combinations of nonlinear functions of X. What | mean by this is that
we can find function ¢1(x), ..., ¢x (x) such that

K
F(X) =Y Bigi(X)

i=1

The functions ¢;(X) are often referred to as basis functions, or features in machine learning lingo. We can
think of each ¢;(X) as a new predictor.

( N\
Example 4 (Simulating a nonlinear model). Consider the conditional Gaussian model given in Equation 2
with

f(x) = Bo + Bix + Box?

This is simply a linear model once we define the new predictors

X1 = ¢1(X) =X
Xo = $o(X) = X2

Question:
(a) Generate data from this model

(b) Fit the data to the model using statsmodels.

Solution: See colab notebook



https://colab.research.google.com/drive/1q3mfX4od6iLFHy2dYFaKzw6FjaTbAaD3?usp=sharing

>
u
X

Figure 2: An illustration of how a nonlinear dependence on our predictor can be incorporated into the linear
modeling framework by adding a feature.

Which functions ¢ should we use? The answer of course depends on the problem at hand. For example,
we might know something about the physics of the data we are modeling. In some cases, we may select the ¢
so that the parameters a; have clear interpretations (as is the case in linear regression model). The following
illustrates such an example.

Example 5 (Mauna Kea Data). Solution: See colab notebook

Next we will understand that within the linear regression framework we can fit very complicated nonlinear
data. However, we need to be careful when adding new features to the model. The following example will
illustrate how it is possible to “overshoot” and make our too complex. In the next set of notes we will dive
much deeper into this, bridging the gap between machine learning and statistics.

5.3 Cross validation

We saw from the previous example that R? is not very helpful if we want to decide how complex we'd like
to make our model, since it is possible to explain all the variation in the Y values with a model which is too
complex. In order to address this, we take the approach of cross validation. The basic idea of cross validation
is to break our data up into two subsets: training set, which we use to fit the model, and a testing set, which
we compare to the predictions of the fitted model. Some Notation

| will use D to refer to our entire data set:

D=, X)={(X1.v1).....(Xn. )}

Dtrain = (ytrain xtrain) gnd ptest — (y'test xtest) wil| represent the subsets of the data to be used to training
(that is, fitting) the model and testing the fit respectively. We will assume that

D= Dtrain U Dtest


https://colab.research.google.com/drive/1q3mfX4od6iLFHy2dYFaKzw6FjaTbAaD3?usp=sharing

Let Nirain and Niest denote the number of points in each group. Let y(x, D) the prediction of E[Y|X = x] using
the fitted coefficients based on a data set D; that is

K
y(x, D) = Bigi(x)
i=1
where § are the (usually least squares) fitted coefficients using the data in D.
Now let us define the training error
Ntram

Z(y(Xltrain' Dtrain) _ Yl_train)2

i=1

5 1

6 . = —-—
train
Ntrain

where the average is taken over different replicates of our data and Y; is our prediction of E[Y|X]. Not that the
training error tells us about how well our model does at predicting the same data we used to fit it, and therefore
not surpisingly, it is closely related to R?:

2
R2 ~ 6train

T Var(ytrain,f) .

In order to see how well our model does at predicting the points we did NOT use to fit it, we introduce the

test error:
Ntest

1 .
€t2est — Z(y(}(l_testY Dtraln) _ Y/_test)2
Ntest i—1

Note that the fitted coefficients used to compute y;(X*) come from fitting the model to the training data,

even though we are evaluating ¢ at the test points.
( \

Example 6 (Cross validation on polynomial model). Consider example 6 from the previous weeks notes.

Question: Plot the training and test error as a function of the number of parameters.

Solution: See colab notebook.

5.4 Overfitting

In order to understand U-shaped curve seen in Example 6, we first need to introduce some more general
terminology and notation for talking about estimators (of which y is an example). Recall from Unit 3 that the
mean-squared error of an estimator 6 of some quantity 9 is

MSE, = E [(§ — 6)?] (3)

Remember, 6 could be a parameter, or it could be a value of a function, such as f(x), that we would like to
predict. For now, let's just think of 6 as any estimator.
Remember that we proved the bias variance tradeoff:

MSE, = var(d) + E [0 — 6]° (4)
Now let’'s return to working in the context of a model of the form

Y|X ~ Normal(f(X), o?)


https://colab.research.google.com/drive/1EYcMviowfsnsVe7vsUKlyzkNsddUiTau?usp=sharing

where f(X) can be written as a linear combination of features
N
FX) =Y Bii(X).
i=1
Letting 8 = y(x, D), applying Equation 3 yields
MSEjx.p) = E [(9(x, D) — f(x))?]

where the average is taken over replicates of our data D. This is a measurement of our ability to predict f(x),
which is exactly what the test error seeks to measure. To more closely relate the bias-variance tradeoff to the
test error, we will use a slightly different definition of MSE, which is

MSEj .0y = E [(7(x. D) — Y (x))?] (5)
where Y is a sample from Y|(X = x). You can show (see Exercise) that
MSEy(x.0y = 0% +var(9(x, D)) + E [§(x, D) — f(x)]?

The new term, o2, captures the fact that, unlike the deterministic term f, we can NEVER predict the random
variable Y exactly. You should be able to justify that

EthSt ~ E [MSEy(X'Dtraln)}

The important thing to recognize is that a complicated model will tend to have a higher variance, since it will
be able to change more in response to data. Meanwhile, a very simple model will tend to have a higher bias.

Example 7 (Plotting Bias and variance). Let's continue with Example 6 and try to illustrate the bias
variance tradeoff by computing these (or really approximations to them) separately.

Solution: See colab notebook.

We now summarize some observations we've made thus far:

e |n aregression model, as we add more coefficients, eventually the model becomes more and more “flexible”,
in the sense that is can describe more different types of data sets. Here, by “describe”, we mean that it
can be fit to those data sets with a small value of R? or training error. With enough features, a model can
perfectly interpolate between the data points, meaning y(X;, D) = Y; for each data point (X;,Y;) when
the model is fit on all our data points.

e Unlike the training error and R?, the test error, €2, does not simply increase as we make the model more
complex, rather it has a U-shape. Thus, there is a optimal model size at which our model's predictions
of new data points — that is, data points outside the set we used to fit it — is best.

e The U-shape can be understood in terms of bias and variance. We know this because the mean-squared
error, which is the “math world” version of €2, can be decomposed into a bias and variance term. The
variance term tells us how variable the predictions of our model will be when we fit it to different training
sets, while the bias tells us how much its predictions. will differ, on average, from real data.

5.5 Orthogonality and Fourier analysis

Sometimes we have a particularly hypothesis about what features my contribute to an signal we are analyzing —
for example, the CO2 data from last week we suspected there was a linear trend and yearly trend superimpose


https://colab.research.google.com/drive/1EYcMviowfsnsVe7vsUKlyzkNsddUiTau?usp=sharing
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Figure 3: Bias and variance illustrated with fits to two different datasets (blue and red) drawn the from the
same distribution

together. This was reasonable because we know that whether tends to follow a yearly cycle. But in general, if
we don't have such knowledge how should we select the functions ¢7 It is often to our advantage to select basis
function ¢; so that our predictors are not correlated. That is, if ¢;(X) and ¢;(X) are thought of as random
variables (the randomness comes from X) then we want them to be uncorrelated.

Throughout our discussion, we will assume that E[¢;(X)] = 0. We can easily make this so by subtracting
the means of our features. Therefore, we would like to find ¢; such that

El¢i(X)j(X)] =0 i #J. (6)

We this holds for some distribution of X, we say that ¢; and ¢, are orthogonal with respect to this distribution.
N\

-
Example 8 (Sin series). Let us now work with the particular example where

X ~ Uniform(—L, L). (7)

Even if our X points are not random, but are say evenly spaced on the interval [—L, L], a random sample
from the uniform distribution will be statistical similar to some randomly selected evenly spaced X points.
Thus, we can think of the uniform distribution as approximating the spread of our X data with a random
variable.

Now consider the basis functions

800 =sin (22).

Question: Show using simulations that ¢; are orthogonal with respect to the uniform distribution on
[—L, L] (Equation 7).

Solution: See colab notebook.

Notice that if ¢; are orthogonal, then we can express the regression coefficients as

cov(Y, ¢;(X)) _ E[Y;(X)]
var(¢;(X)) El¢;(X)?]

and hence our fitted coefficients from N data points can be approximated as

s YL (XY
SRSy TaT ©)

B; =


https://colab.research.google.com/drive/1EYcMviowfsnsVe7vsUKlyzkNsddUiTau?usp=sharing

This suggests ﬁj should depend only weakly how many of the features ¢ we have included in our model! This
is consequence of orthogonality. In contrast, in the earlier example where we used polynomial features adding a
new predictor, say X*, would dramatically change the fitted value of 3,. However, Now let's return to Example
8. A limitation of this model is that it only permits us to model “odd functions” that is, functions for which
f(x) = —f(x), as each ¢, has this property. It is therefore desirable to add addition features which permit this,
but we'd like them to still be orthogonal. To this end, we introduce a new set of features to the model given

by the cosine functions:
TXJ
cos| — ).
L

Our new model, called a Fourier series, is given by

K . .
f(x) =06+ Zﬁ;sin (T) + a; cos (T)
i=1

where we are using a; to represent the coefficients of the cosine terms. Fourier series are on of the most
important models in data science and engineering. It can be proved that as K — oo we can approximate

essentially ANY function with a series of this form.
( )
Example 9 (Working with Fourier series in python). Suppose we have data from the model with

f(x) = sin(3mx) + sin(10mx)
where X; = (i — 1)/N (meaning the X points are evenly spaced in [0, 1].

Question: For different values of o2, generate data from this model and fit it to a Fourier series with
K =100 terms.

Solution: See colab notebook.

. J

The process of computing the coefficients Bj and &; for the Fourier series is called a Discrete Fourier Transform.
Usually DFT refers to the cases where the X; are equally spaced. In this case, the orthogonality condition (Equa-
tion 6) is true is “data world”, not just "math word” — what | mean by this is that for equally spaced data
points.

To be precise, consider the predictor data on the interval [0, L] given by

L(i—1)
N—1
fori=1,...,N. Thus X; =0, Xo = L/N, X3 =2L/N and Xy = L. We could generate these points with

np.linspace. The following theorem tells us that the empirical, or sample covariance between the sin features,
is exactly zero for these predictors.

N .

2miXi\ . [ 2mWkX; .
Zsin(m )sm(7r )zO k#j
— L L

Often we want to summarize how different frequencies are represented in our data, but we don't particularly
care about whether they come form the sin or cos terms. To achieve this, one uses the power spectrum density,
also known as the peridogram,

X; =

Theorem 1.

P =B+’

The power spectrum density is a fundamental object in signal processing, and it essentially tells us how “wobbly”
a signal is.

10


https://colab.research.google.com/drive/1EYcMviowfsnsVe7vsUKlyzkNsddUiTau?usp=sharing

~
Example 10 (Periodogram). Question: Compute the periodogram of the data generated in Example
?? and confirm the same periodogram can be generated with the periodogram function from the
scipy.signal library. This is neat and not often made point, that this fundamental structure from signal
processing is in fact coming from fitting a linear regression model with least square!!

Solution: See colab notebook.

11
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5.6 Exercises

Exercise 1 (Car brands and mpg): In this exercise we will consider the data set containing information about
cars and their miles per gallon. This can by loaded by

> data = pd.read_csv("https://raw.githubusercontent.com/intro-stat-learning
> /ISLP/main/ISLP/data/Auto.csv",encoding = "IS0-8859-1")
> data["name"] = [name.split() [0] for name in data["name"].values]

The second line takes the original names (which are the specific models — e.g. Toyota Yaris) and extracts only
the brand name (e.g Toyota). We are going to study which brands have the best mpg. Some brands tend to
make larger and heavier cars (e.g. pickup tricks) which will have worse mpg, but we want to understand how
brands compare within a certain type of car. To determine this we need to control for other factors, such as
the the year and weight.

(a) Using all the columns except origin and displacement (since it's not obvious what the units are), write
down the regression model which you want to fit to this data to address the question posed in the problem
instruction. Assume there are no interactions. Provide an interpretation of each regression coefficient.

(b) Fit the regression model to the data.

(c) What are the 5 best brands for mpg within the same type of car (weight, horsepower etc.).

Exercise 2 (Marginal regression in interactions model): Consider the probability model

X1 ~ Normal(0, 03)
X, ~ Normal(0, 03)
Y[(X1, X2) ~ Normal(B Xy + BoXo + Br2X1 X2, 07)

(a) Derive the distributions of Y| X7 and Y| X>. Hint: These conditional distributions are both normal, so you
only need to determine the mean and variance to find the distributions.

(b) When does the probability model stated in the problem define regression models for Y vs. X;, i = 1,27
That is, if we ignore one of the predictor variables do obtain a single predictor linear regression model for
the other?Would this be true if the predictors did not have zero mean?

Exercise 3 (Predicting the residual plot based on interaction model): Suppose we have 200 data points generated

from the following model
Y =4X; —2Xo +4X1 Xo + € (9)

where 0 = 0.2, xq is continuous predictor which is uniformly distributed between —1 and 1 and X5 is a binary
predictor (e.g. a Bernoulli random variable). You can assume X, = 0 for about half the data points. The goal
of this problem is to build your intuition about residual plots.

(a) Without actually fitting a regression, describe in detail what the residual plot would look like if we fit
this data to a linear regression model with NO interaction term. To do so, follow the following procedure

e First, think about what the data looks like when X, = 0 and X5, = 1 separately. In each case, sketch
the regression line and make note of how much variation there is around these lines to get an idea
of what the cloud of (Xj,Y;) points will look like.

e Now consider what the fitted regression line will be based on this picture. What is a very rough
estimate of the slopes G and (357

e To get a sense for what the residuals look like, take the difference between the true model and this
line.

12



(b) Confirm you answer with simulations.

Exercise 4 (Drug interactions): When treating microbial infections and cancer, combinations of drugs can
perform better than individual drugs. However, it can be difficult to identify which combinations are optimal
for the reason that identifying very “high order” interactions is difficult. In order to understand the best way to
combine M drugs, we construct a regression where Y is the “effect” of the drug and X; is a Bernoulli random
variable representing whether or not the /th drug is present or not. We want to consider the possibility
M M M M M M
Y= BXi+> D BuXX |+ DD BIXiXiXe | +XaXo - X+ €
i=1 i=1 \ j>i =1 \ j>i k>j
For example, with M = 3, we would have

Y = B1X1 + BoXo + B3 X3 + B1,2X1Xo + B1,3X1.X3 + B2,3Xo X3 + B1,23X1 X2 X3 + €

(a) Suppose M = 3 and

i ﬁl T i ]_2 T
B> —0.8
s —0.11
B2 = 3.48
Brs 262
B3 1.03

L B123 | | 1.66

What is the interpretation of each coefficient?

(b) What is the optimal treatment, meaning which combination of drugs 1, 2 and 3 should we use to maximize
Y? There are different ways you can approach this. One way is to make a list of each (X1, X5, X3),
compute Y for each one and the find the index of the maximum Y value (using a for loop or argmax).

(c) Now additional suppose that 0> = 1. By generating simulated Y values with these parameters for different
values of N, determine how many data points are needed to reliably find that all interactions coefficients
have p-values below 0.05

(d) Perform the same experiment as in (c) but fit the data to a model with no interactions. What do you
find? How does adding the interaction terms influence the p-values.

13
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