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Introduction

Now we are ready to study linear regression with multiple predictors. Much of the concepts carry over from

the single predictor case and the Python code is nearly the same. There are some subtle aspects though when

it comes to how we interpret the predictors. In particular, we have to remember that these represent average

differences in the response variable when all other predictors are fixed. This is the idea of controlling for another

variable. We will also understand what happens when we add regression coefficients to the model.

4.1 Multiple predictor linear regression

The real power of regression comes when we work with models of the form

Y = β0 +

K∑
i=1

βiXi + ϵ (1)

ϵ ∼ Normal(0, σ2) (2)

where Xi is a set of K predictor variables. Alternatively, we can write

Y |(X1 = x1, . . . , XK = xK) ∼ Normal

(
β0 +

K∑
i=1

βiXi , σ
2

)
(3)

You might see the shorthand,

Y ∼ LR(X, β, σ2). (4)

In these notes, our goal is to answer the following questions

1. What are estimators of the parameters in this model?

2. How do we interpret the regression coefficients βi?

3. Precisely what are the assumptions we are making when we use a linear regression model?

4. How do we determine if the model assumptions are valid?

Example 1 (Simulating and fitting a regression with two predictors). See colab notebook.

The output from the regression with multiple predictors is basically the same as for single-predictor, except

now we have multiple rows for the difference regression coefficients. In each case, the interpretation of the

p-value and confidence intervals are nearly the same as they were for the single predictor case. However, for

the p-value, we need to remember that this is the p-value testing the hypothesis that a particular predictor is
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zero. The F -statistic is used to test the hypothesis that all predictors are zero, although I won’t go into much

more detail because I don’t place a big emphasis on hypothesis testing in this course.

The interpretation of R2 is the same as before, except that now we are considering the ratio of the variance

conditioned on ALL predictors to the overall variation in Y ; that is,

R2 = 1−
∑
i r
2
i∑

i(yi − ȳ)2
≈ 1−

var(Y |X1, X2)
var(Y )

where in the multi-predictor case

ri = Yi −

(
β̂0 +

m∑
k

β̂kXi ,k

)
. (5)

Figure 1: The function y(x1, x2)

4.1.1 Basic interpretation and estimation of the parameters

References: [?, Ch. 10]

In order to interpret the parameters, it’s easiest to work with just two predictors like we have in the example

above. The formula for the conditional expectation of Y is

E[Y |X] = β0 + β1X1 + β2X2 (6)

where I’m using the shorthand

E[Y |X] = E[Y |(X1, X2)]
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to mean the expected value of Y conditioned on both predictors.

Equation 6 is the equation for a flat surface in two dimensions:

y = β0 + β1x1 + β2x2 (7)

A drawing of y is shown in 2.

If we make a slice through the surface in the x1 direction and look it at from the side, we see a line with

slope β1 (and similarly for x2). This leads to the following interpretation of βi :

β1 is the slope of E[Y |X] vs. X1 for fixed X2.

Notice that in the statement above, even though we are conditioning on both variables, the slope β1 is inde-

pendent of which value of X2 we condition on. We can obtain the interpretation of β2 by flipping the role of

X1 and X2. The fact that is doesn’t matter which value of X2 (respectively X1) we have conditioned on is one

of the core model assumption of linear regression with multiple predictors, which we do not encounter in the

single predictor case. Another way of articulating it is to say: the “effect” of X1 and X2 are not dependent on

the other predictor’s value.

Example 2 (Test scores). We will now work with a new example of Children’s test scores. To motivate this,

we can imagine we are interested in studying what factors determine children’s success in school in order

to effective design interventions which help students that are struggling. The predictors are mother IQ and

high school education. In this case, the model assumptions are saying that the association between the

mother’s high school education and test scores is not influenced by the mother’s IQ. that is, If we compare

two random children whose mothers have the same IQ, differ in whether they attended high school, then

the average difference between their test scores will not depend on the IQ of their mothers, although the

average magnitude of their test scores will depend on the mother’s IQ.

Question: Fit the data to a linear regression model with two predictors and answer the questions

(a) What are the regression coefficients and the interpretations?

(b) Based on this regression analysis, which factor, IQ or high school education do we believe is more

predictive of test scores?

(c) Overall, how well do high school education and IQ as methods do at predicting the test scores of

children?

(d) What is the chance a student whose mother has an IQ of 90 and did not go to high school does

better than a student whose mother has an IQ of 110 and did go to high school?

Solutions: We get the following output from statsmodels in the colab notebook:

¿ OLS Regression Results

¿ ==============================================================================

¿ Dep. Variable: y R-squared: 0.214

¿ ==============================================================================

¿ coef std err t P¿—t— [0.025 0.975]

¿ ------------------------------------------------------------------------------

¿ const 25.7315 5.875 4.380 0.000 14.184 37.279

¿ mom˙hs 5.9501 2.212 2.690 0.007 1.603 10.297

¿ mom˙iq 0.5639 0.061 9.309 0.000 0.445 0.683

¿

¿
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(a) For the regression coefficients we find the follow:

• βhs ≈ 5.95. This means that among students whose mothers have the same IQ, a student
whose mother attended high school will, on average, have a score that is 5.95 points higher

than a student whose mother did not.

• βiq ≈ 0.56. This means that among students whose mother’s have the same high school
education (either they all attended or did not attend high school), the difference between

scores of students whose mothers IQ differs by one point is, on average, 0.56 points.

• β̂0 ≈ 26. Mathematically, this tells us the average score of students whose mother did not
attend high school and have zero IQ, but this is not a meaningful quantity since noone has zero

iq. We can therefore ignore it when it comes to interpreting the output.

(b) Clearly βhs is smaller, but we need to remember that are comparing quantities that have different

units. Xiq takes values from around 70 to 130, while Xhq is either zero or 1. What is actually more

useful is to compare how much a difference in one standard deviation of the predictor makes. For

example, βiqσiq is the average difference in test scores between students whose mothers have the

same high school education, but whose mother’s IQ differ by one standard deviation. To this end,

we can compute the following measures of effects

β̂hsσ̂hs ≈ 2.44
β̂iqσ̂iq ≈ 8.44.

The association between IQ and scores is actually larger. Note that the comparison is not perfect,

since Xhs is a binary variable, but it still gives us a generally idea of the effects.

(c) The R2 value is 0.214, so about 20% of the variation in test scores is explained by the variation in

high school education and IQ of mothers.

(d) In the colab notebook we calculate this to be about 25%.

4.1.2 Interpretation of regression coefficient: a deeper look

We can express the regression coefficients explicitly in terms of conditional averages as

β1 = E[Y |X1 = (x + 1), X2]− E[Y |X1 = x,X2]. (8)

Now let’s think about how the regression coefficients are related to covariance. One guess would be that, just

as in the single-predictor case, β1 is given by cov(Y,X1)/σ
2
x1 . After all, if we look a slice of the 2D planer

function y(x1, x2) along the x1 direction, we get the same slope for all x2. It stands to reason that if we look

at only the points in the x1-y plane our regression slope would be β1. However, this argument assumes that

when we change x1, x2 does not also change. This is best understood with an example.

Example 3 (Test scores with multiple vs. single predictors). Here we will consider once again the example

of children’s test scores and compare using both predictors in the sample above to the results we obtain

we using only one predictor (high school education).

Question: What is the difference between the coefficient of Xhs when this is the only predictor and the

coefficient when Xiq is also used? How is the coefficient in the multiple predictor case related to coefficient

in the single predictor case?
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Solution: When we performed the regression using only the mother’s high school education as a predictor,

we obtained a coefficients of about β̂′hs ≈ 12 and β̂′0 ≈ 78 (i’ll use β′ indicate coefficients in the single
predictor model, as opposed to the multiple predictor model). The fitted model is

ŷ = 12Xhs + 78

while when also using Xiq as a predictor, the coefficient is about half that.

In the model with one predictor, the regression coefficient of 12 means that on average a student whose

mother went to high school will do 12 points better than one whose mother did not. That is, we are

predicting

E[Y |Xhs = 1]− E[Y |Xhs = 0] = β′hs ≈ 12

Let’s compare this to what we would predict in the model with two predictors. In that case, the average

test score of student whose mother went to high school is

ŷhs ≈ E[Y |Xhs = 1]
= E[β0 + βhs + βiqXiq|Xhs = 1]
= β0 + βhs + βiqE[Xiq|Xhs = 1]
≈ 6× 1 + 26 + 0.6X iq|hs

where

X iq|hs = sample average IQ of mother who attended high school ≈ E[Xiq|Xhs = 1]

On the other hand

ŷno−hs = 6× 0 + 26 + 0.6X iq,no−hs
where

X iq|no−hs = sample average IQ of mother who DID NOT attend high school ≈ E[Xiq|Xhs = 0]

Thus, according to the model with two predictors, the average difference in test scores between the hs and

no-hs groups is

∆ŷhs = 6 + 0.6(X iq|hs −X iq|no−hs)

or written in terms of more probabilistic notation

E[Y |Xhs = 1]− E[Y |Xhs = 0] = βhs + βiq(E[Xiq|Xhs = 1]− E[Xiq|Xhs = 0])

We can compute X iq|hs − X iq|no−hs ≈ 10.3, which gives ∆ŷhs ≈ 12. Thus, we have calculated the single-
predictor regression coefficient from the multiple predictor case.

The important thing is that the two predictors are not independent. If they were, then X iq|hs − X iq|no−hs
would be zero, and it would have to be that the coefficient of Xhs is the same in both cases. We can generalize

this to any model where X1 is a binary predictor to obtain a relationship between the regression coefficient for

β1 with and without the second predictor; that is,

β′1 = β1 + β2(E[X2|X1 = 1]− E[X2|X1 = 0])

where β′1 is the regression coefficient without using X2 as a predictor in our model. Now we will dig deeper into

the underlying, math, with the goal of better understanding how the relationship between predictors shapes the

regression coefficients. A byproduct of this exploration will be formulas for the regression coefficients in terms

of covariances between the predictors, and covariance between the predictors and the response variable. These

formulas generalize the relationship cov(X, Y ) = β1σ
2
x , which we discovered to hold in the single predictors

case.
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Figure 2: Here I’m illustrated the difference between the marginal regression slope (the slope of E[Y |X1] vs.
X1) and the regression coefficient β1 in the two predictor model. I use the notation of Example 4, although

the idea applies more generally. When we increase x1 by 1 without fixing X2, then on average X2 changes by b

(which is the slope between x1 and x2 here, not the intercept.) Therefore, in order to relate this marginal slope

to the regression slooe β1, subtract the increase in Y that is caused by the increase in X2 (corresponding to the

vertical blue arrow).

Consider a generic linear regression model with two predictors. We will set β0 = E[X1] = E[X2] = 0 for

simplicity, since these cancels out in the end. We start by computing cov(X1, Y ), which is simply E[X1Y ] since

E[X1] = E[Y ] = 0. Just as we did for the single-predictor case (week 3), we write

cov(X1, Y ) = E[X1Y ] = E[X1E[Y |X1]]
= E[X1(β1X1 + β2X2)] = β1E[X

2
1 ] + β2E[X1X2]

= β1σ
2
x1 + β2cov(X1, X2)

where we have used that, since E[X1] = E[X2] = 0, var(X1) = E[X
2
1 ] and cov(X1, X2) = E[X1X2]. If we do

the same for X2, we get two equations

cov(X1, Y ) = β1σ
2
x1 + β2cov(X1, X2)

cov(X2, Y ) = β2σ
2
x2 + β1cov(X1, X2)

As with the single-predictor case, it is very useful to represent β1 and β2 as expectations which can be computed

as averages over our data points. In addition to providing some insight into the meaning of the regression

coefficients, this will yield candidates for our estimators of these quantities. Since everything in the equation

can be represented as a some sort of expectation except the coefficients β1 and β2, we just need to solve for

these coefficients. Solving the linear system[
cov(X1, Y )

cov(X2, Y )

]
=

[
σ2x1 cov(X1, X2)

cov(X1, X2) σ2x2

] [
β1
β2

]
yields [

β1
β2

]
=

[
σ2x1 cov(X1, X2)

cov(X1, X2) σ2x2

]−1 [
cov(X1, Y )

cov(X2, Y )

]
=

1

σ2x2σ
2
x1 − cov(X1, X2)2

[
σ2x2 −cov(X1, X2)

−cov(X1, X2) σ2x1

] [
cov(X1, Y )

cov(X2, Y )

]
After using the formula for the inverse of 2× 2 matrix, we obtain

β1 =
cov(X1, Y )σ

2
x2 − cov(X2, Y )cov(X1, X2)

σ2x2σ
2
x1 − cov(X1, X2)2

(9)
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The formula is particularly revealing if all the variances are set to one

β1 =
1

1− ρ21,2
(ρ1 − ρ1,2ρ2)

where ρ1,2 is the correlation coefficient between X1 and X2. Notice that if X1 and X2 are uncorrelated (ρ1,2 = 0),

we obtain the usual connection between the regression coefficient and the correlation coefficient between X1
and X2.

Example 4 (Correlated predictors). Consider the model

X1 ∼ Normal(0, 1)
X2|X1 ∼ Normal(bX1, 1− b2)

Y |(X1, X2) ∼ Normal(β1X1 + β2X2, σ2).

Question:

(a) Show that var(X1) = var(X2) = 1 and cov(X1, X2) = b

(b) Expression β1 as a function of b.

(c) Test Equation 9 with simulations.

Solution:

(a) By definition of the model var(X1) = 1 and

var(X2) = b
2var(X1) + 1− b2 = b2 + 1− b2 = 1

cov(X1, X2) = bvar(X1) = b

(b) We can write Equation 9 as

β1 =
cov(X1, Y )− cov(X2, Y )b

1− b2

(c) See colab notebook.

This can all be generalized to the situation where we have many predictors. The general formula for the

regression coefficient in terms of expectation is

βi = E[Y |X1, . . . , Xi−1, Xi = xi + 1, Xi+1, . . . , XK ]
− E[Y |X1, . . . , Xi−1, Xi = xi , Xi+1, . . . , XK ]

Note how this is a very natural extension of Equation 8. We get a more complex expression for the coefficients

but the idea is the same.

4.2 Collinearity

The sample distribution of coefficients Just as before, we want to understand what the sample distribution

of the coefficients looks like. In the multiple predictor case, we need to think about the joint distribution of

(β̂1, β̂2, . . . , β̂M). We will start by focusing on the two predictor case.
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Figure 3: (top) In the single-predictor case, the width of the sample distribution measures how confident we are

of a particular slope. It will be narrow if a replicate of our data is likely to produce a very similar slope. These

means we get a rough idea of the width of sample distribution by seeing much we can change our regression

line and still obtain something that appears to pass through our data. (bottom) In the two predictor case, we

have a regression plane and changing β1 and β2 will “wiggle” the plane by tilting it in the x1 and x2 directions

(there is also the intercept which can shift the plane up and down, but I’m not illustrating that). If X1 and X2
are uncorrelated, it doesn’t matter which way we wiggle it, the fit will be similar, but if X1 and X2 are strongly

correlated, wiggling the plane in the direction perpendicular to the points has a much smaller effect that parallel

to them.

Example 5 (Predictor sample distribution). Consider the model in 4. Let’s look at the sample distribution

by fitting many simulated replicates.

Question: Write a function to generate a dataframe containing samples from the sample distribution

of (β̂1, β̂2). Make a scatter plot and explore the structure of the sample distribution, in particular it

dependence on b, which controls the correlations between X1 and X2.

Solution: See colab notebook

To better understand what is going on, imagine X1 and X2 are very highly correlated (if they are perfectly

correlated we say they are colinear). We can then write

Y = β1X1 + β2X2 + ϵ ≈ β1X1 + β2X1 + ϵ
≈ (β1 + β2)X1 + ϵ

There are many ways to select β1 and β2 so that the surface β1x1 + a2β2 is close to the lines, since a change

in β1 can be compensated by a change in β2. This means that if we estimate β1 and β2 and then generated

new data, it would be possible to get a VERY different value of β̂1 and β̂2, so long as β̂1+ β̂2 is close to

what we got before. This is illustrated in Figure 3 and Figure 4.

8

https://colab.research.google.com/drive/1oIRgP_7-c5DGV1D2iz5nj406mZfJxUIG?usp=sharing


Figure 4: Different views of the data in the case when X1 and X2 are correlated. If we look at the data from

the side, or along the X1 = X2 direction, then all our regression planes appear similar; however, when looked at

from the “front” as shown in the right panel, we see that the places actually have very different slopes in the

other direction.

4.3 Dealing with categorical data

One situation in which models with multiple predictors frequently arrises is when trying to predict a Y variable

based on categorical predictors, such as race. In this case, we need to transform the categories into numerical

values. For example, if there are two categories (e.g. YES and NO) we map our variable to 0 or 1. If we have

3 categories (e.g. White, Black, Other), we might first think to map them to 0, 1 and 2. This has a problem

though: A chancge from 1 to 2 should not necessarily correspond to a change from 0 to 1. In other words,

there is no clear ordering of the x values. Sometimes we refer to such predictors and qualitative rather than

quantitive, since they express a quality of our data points instead of a numerical quantity. To address this issue,

we create dummy variables. In particular, In order to take a categorical variable and transform it into a set of

indicator variables in python, we use the python function get˙dummies. The usage of this is illustrated in the

following example.

Example 6 (Racial disparities in earnings). Here we will fit the earnings data to a model with race as a

predictor. In particular, we want to know: What is the association between race and earnings among adults

in the US? We will start with a model using only race as a predictor. One way to approach this would be

to simply use a binary predictor and consider only 2 race categories (e.g. White and non-White). This

is limiting though. Instead, we can create a variable for each rate category we are interested in. In the

dataset there are 4 race categories (not sure why these 4, but that’s what we’ll work with)

{Black,White,Hispanic,Other}

In principle, we could create a binary variable for each one (these are what we call dummy variable), to
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obtain a model like

Y = β0 + βblackXblack + βhispanicXhispanic + βotherXother + βwhiteXwhite + ϵ

This is problematic though, since at least one of the predictors above MUST be 1. This means that the

first 3 of the predictors are perfectly correlated with the other one. By the default, python will drop the

first predictor (in alphabetical order), leaving us with the model

Y = β0 + βhispanicXhispanic + βotherXother + βwhiteXwhite + ϵ.

Question: Fit the data to the model above. What is the expected disparity in earnings between someone

who is white and someone who is hispanic.

Solution: See colab notebook. To answer the question posed above, we begin with the interpretations of

the regression coefficients. In terms of conditional expectation, these are

βwhite = E[Y |Xwhite = 1, Xhispanic = Xother = 0]− E[Y |Xwhite = 0, Xhispanic = Xother = 0]
= E[Y |someone is white]− E[Y |someone is black] ≈ 4.9

βhispanic = E[Y |Xhispanic = 1, Xwhite = Xother = 0]− E[Y |Xhispanic = 0, Xwhite = Xother = 0]
= E[Y |someone is hispanic]− E[Y |someone is black] ≈ −0.7

Our goal however is to compute

E[Y |someone is white]− E[Y |someone is hispanic]
= E[Y |Xwhite = 1, Xhispanic = 0, Xother = 0]− E[Y |Xwhite = 0, Xhispanic = 1, Xother = 0]
= β0 + βwhite − β0 − βhispanic
= βwhite − βhispanic
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Exercises

Exercise 1 (A binary and normal predictor): Consider the a linear regression model

Y |(X1, X2) ∼ Normal(β0 + β1X1 + β2X2, σ2)

where the two predictors obey

X1 ∼ Bernoulli(q)
X2|X1 ∼ Normal(bX1, s2)

(a) Can you think are at least two examples where this would be a reasonable model of the relationship

between 3 variables X1, X2 and Y ?

(b) What are the formulas for cov(X1, X2) and var(X2) in terms of the model parameters q, b, s, β0, β1, β2, σ
2?

You should be able to derive these formulas, but you may also reference formulas in previous exercises

and class notes. You may assume β0 = 0 for this part and the reminder of the exercise, as this simplifies

some calculations and doesn’t change the results.

(c) Derive a formula for cov(Y,X1) in terms of β1, q, β2 and b.

(d) Explain how the formula you derived in part (b) is related to the equation for cov(Y,X1) in the single

predictor regression model (page 4 on week 3 notes). In particular, for what parameter values do the two

formulas coincide? Your conclusion will be a particular case of what we saw to be true more generally in

class concerning the relationship between β1 and the covariances in a regression model with two predictions.

(e) Now derive the formula

var(Y ) = q(1− q)
(
β21 + β

2
2b
2 + 2b

)
+ β22s

2 + σ2

You will need to use the formula for the variance of the sum of two (not-necessarily independent) random

variables, which is given on the midterm practice problems. This is also in the “addition and multiplication

section” on the wikipedia page.

(f) The calculations in part (c) allows us to solve an exercise in Chapter 8 in Demidenko’s textbook [?], albeit

in the more restrictive context of a binary and normal predictor: Is it possible that β1 and β2 are both

negative, yet the (marginal) slope of Y vs. X1 is positive? If so, generate simulated data where this is

the case.

Exercise 2 (Earnings data): Consider the earnings data. This can be loaded with

¿ df = pd.read˙csv(”https://raw.githubusercontent.com/avehtari

¿ /ROS-Examples/master/Earnings/data/earnings.csv”)

As in the previous exercise set, you will study the association between earnings and gender, but now using

regression with multiple predictors.

(a) Perform a linear regression using statsmodels with gender and height as predictors.

(b) Provide interpretations for each regression coefficient (like we did in class for the test score example).

(c) Which factor, height or gender is more important based on your analysis?

(d) Based one the fitted model, predict the chance that someone who is not male and is 5.8ft earns more

than a male who is the same height? To get a sense for the importance (or lack-thereof) of the height

predictor, compare this to the chance that a male earns more than a non-male (regardless of height).
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Exercise 3 (Sample distribution): In the notebook from class, we wrote code to generate samples from the

sample distribution of (β̂1, β̂2) in the model

X1 ∼ Normal(0, 1).
X2|X1 ∼ Normal(bX1, 1− b2)

Y |(X1, X2) ∼ Normal(β1X1 + β2X2, σ2)

Specifically, we had a function which takes β1, β2 and β0 as inputs and returns a dataframe where the columns

are the samples of β̂1 and β̂2 respectively. When we plotted the correlation coefficient as a function of b values

and estimates the correlation coefficient between β̂1 and β̂2, it was a decreasing line.

(a) What would happen if instead of plotting the correlation coefficient, we plotted se(β̂1) as a function of b?

Would it increase? decrease? neither? Note that both X1 and X2 are standardized, so the distribution of

X1 values is not changed when we adjust b. In answering this question, you can either give a geometric

intuition, or do a calculation. You should check your answer with simulations, but you still need to provide

a detailed explanation.

(b) Is it possible to have large standard errors on all the β̂i values (measured relative to the true values of

course), but still have a large (meaning close to one) value of R2? If so, for what parameter values does

this happen? Run simulation(s) to support your answer.
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