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3.1 Introduction

Now we are almost ready to begin working with regression models, but we first discuss some concepts from

statistical inference. These include the idea of a sample distribution (already alluded to in our discussion of

the central limit theorem), bias, consistency and confidence intervals. Then we work define linear regression

models, which have also already appeared in different forms. The basic idea is that we have some predictors

X1, X2, . . . , Xk and conditional on these variables, the distribution of another variable – the response variable

Y – is Normal. Moreover, it’s mean is a linear function of these variables. These two assumptions allow us to

obtain relatively simple formula (at least for a computer) for the coefficients of the Xi in the linear formula. We

will start, in this section, with a single-predictor learn how to assess a linear regression model in this context.

In particular, we will learn about correlation coefficients, R2 and p-values, standard errors, confidence intervals.

You will need to understand what all these quantities tell us and how they are related.
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3.2 Estimators

We have danced around the concept of statistical inference and parameter estimation for a bit and we saw an

example of an estimator: q̂ = Y is an estimator of the parameter q for a Bernoulli distribution. We also talked

a lot about going between the world of data (e.g. sample means, histogram) and math (e.g. expectation,

density) with sample averages. W Statistical inference is the process of estimating the parameters (e.g.

µ and σ) based on samples of Y AND expressing our uncertainty in these estimates. The expressing the

uncertainty part is what we have not yet discussed formally.

In general, an estimator θ̂ of a parameter θ is just something we compute from the data which is meant

to approximate θ̂. This could in principle be any quantity we can compute from the data (like the maximum

value), but it will almost always be represented as a sample average in some way. We will see examples of this

soon.

The point that should be emphasized is that the estimator is a function of the data. That is, θ̂ depends on

the specific data we collect or simulation we run. It is meant to approximation a parameter which does not

depend on the data and is (in classical statistics) a fixed number. For example, in the instance of a YES/NO

survey or election with two candidates, the “true” quantity we are interested in measuring is the fraction of

people answering YES to some question. Our estimate, q̂, is a variable which depends on the specific subset of

the population we sample and it will change if we look at a different subset.

3.2.1 Sample distribution and standard errors

We call the distribution of θ̂ over many replications of our data the sample distribution. I will use replicate to

mean different realizations of our data (as opposed to the different samples within the data). The distinction is

shown in Figure 1 (left panel). The terminology gets a bit confusing: The sample distribution is the distribution

of θ̂ over many replicates, but each replicate involves many samples.

Figure 1: Replicates and samples

Example 1 (sample distribution of normal mean). Suppose

Y ∼ Normal(µ, σ2)

Question: What is the sample distribution of µ̂ (our estimate of µ)?
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Solution:

µ̂ = Ȳ =
1

N

N∑
i=1

Yi

Using properties of Normal
N∑
i=1

Yi ∼ Normal
(
µn, nσ2

)
Dividing by N,

µ̂ ∼ Normal
(
µ,
σ2

N

)
This assumes σ is known.

A natural way to quantify the uncertainty in our estimate is the standard deviation of the µ̂ under the sample

distribution. We call the resulting quantity the standard error, which is our estimate of the standard deviation

of the sample distribution. For the Normal model, if we are estimating the mean and happen to know σ, then

se(µ̂) =
σ√
N
. (1)

This tells us how much our estimate will vary between different experiments (or surveys/simulations). Impor-

tantly, the standard error depends on σ which we may not know!!! Thus, it is common to estimate the standard

error using an estimate of σ, σ̂, leading to an estimator of the standard deviation:

se(µ̂) ≈
σ̂√
N
. (2)

It should be clear from the context which one we are talking about: If we are working with data and we don’t

know what σ is, when we say standard error we mean Equation 2. If we are working with a particular model

where we have specified the parameters, we mean Equation 1.

3.2.2 Bias and consistency

There must be some properties we would like the estimator to have. At a minimum, it should be in some way

informed by the data, in the sense that having more data should bring our estimate closer to the actual value of

the parameter. More precisely, the more data we have (e.g. the larger N) the closer we expect θ̂ to be to the

true value θ. Of course, we must define what we mean by ”closer” when we are talking about random things.

For our purposes we will say θ̂ is consistent if

E[θ̂]→ θ and se(θ̂)→ 0 as N →∞.

This is saying that as we obtain more and more samples, the sample distribution because more concentrated

around θ.

To see that consistency is not the only property we look for in an estimator, notice that since µ̂1 = µ̂+1/N

is also consistent, yet clearly seems inferior to µ̂. To this end, we say that an estimator θ̂ is unbiased for some

N (not just very large N), the average over the sample distribution is equal to the actual value under the model

distribution; that is,

E[θ̂] = θ.

Example 2 (Bias and consistency). For a normal random variable, define the following estimators of the
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mean:

µ̂2 =
Y1 + Y2
2

Question: Is µ̂2 biased and consistent? what is the sample distribution?

Solution: Note that µ̂2 has the sample distribution

µ̂2 ∼ Normal(µ, σ/
√
2)

It is therefore unbiased but not consistent, since se(µ̂2) = σ/
√
2 does not depend on n.

Example 3 (Normal standard deviation). Let now consider estimating the standard deviation of a Normal

random variable

Y ∼ Normal(µ, σ2)

Given samples Y1, Y2, . . . , Yn, it seems the natural way to estimate σ
2 is using

var(Y ) = E[(Y − E[Y ])2] ≈
1

n

n∑
i=1

(Yi − Y )2

we will call this estimator σ̂20. It turns out σ̂
2
0 is biased and in-fact

σ̂2 =
1

n − 1

n∑
i=1

(Yi − Y )2 =
n

n − 1 σ̂
2
0

is unbiased. The correction by a factor n/(n − 1) is called Bessel correction.

Question: Demonstrate with simulated data that σ̂20 is biased and σ̂
2 is not.

3.2.3 Confidence intervals

The idea of the confidence interval is, roughly speaking, to describe the range of values where we think the

actual value of θ might reasonable be given some estimate θ̂ and its sample distribution. We will mostly work

with the 95% confidence interval, or 95%-CI, which is given by

[θ̂ − 1.96se(θ̂), θ̂ + 1.96se(θ̂)] (3)

The factors 1.96 in front of the standard errors ensure that 95% of samples from the sample distribution will

fall in this range. This makes sense if the sample distribution is well approximated by a Normal distribution.

Note that these samples from the sample distribution do not have the same distribution as θ̂ over replicates

of our data. Said another way, if we draw many samples from our estimate of the sample distribution, their

distribution will not be the same as the distribution of θ̂ we would obtain if we ran an experiment many times

and estimated θ̂ each time. The correct interpretation of the 95%-CI is as follows: If we generate many

replicates of the data then θ (the true value) will fall in the CI, for 95% of them.

Technically speaking, is is NOT the case that there is a 95% chance the true value of θ is in the 95%-CI.

To understand why, note that the parameter has a 95% chance to be in the interval

[θ − 1.96std(θ), θ + 1.96std(θ)] (4)
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but this is difference from Equation 3, since we have replaced θ̂ with θ. The distinction, which is shown in

Figure 2, is important; however, you don’t need to get bogged down by the subtle differences in interpretation.

For practical purposes, you can pretty much thing of the 95%-CI as the region where the parameter value is

likely to be. We provide alternatives ways to think about these intervals when we discuss Bayesian vs. classical

statistics.

0 2 4 6 8 10
replicate

0.02

0.00

0.02

Figure 2: An illustration of the distinction between Equation 4 (gray shaded region) and Equation 3.

Example 4 (Estimating CI). Imagine we are designing an experiment. Our model is a Normal distribution

and from previous experience, we have a ballpark estimate of the standard deviation, which is σ ≈ 0.1.

Question: Roughly, how many samples do we need to collect to have a 95% chance our estimate is within

0.1 of the actual value of the variable?

Solution: The standard deviation of an estimate based on n samples will have a confidence interval of

[µ̂− 0.196/
√
n, µ̂+ 0.196/

√
n]

The width of this interval is 2× 0.196/
√
n. This interval will intersect the true value in 95% of replicates,

so we would like it to have a width < 0.2. It follows that we need

1.962 = 3.8 < n

We can test this by running many replicates for each n, as done in the class notebook.

3.2.4 Bias-variance tradeoff

We introduce the mean-squared error of an estimator θ̂ of some quantity θ. θ could be a parameter, or it could

be a value of a function, such as f (x), that we would like to predict.

MSEθ̂ = E
[
(θ̂ − θ)2

]
(5)

For now, let’s just think of θ̂ as any estimator. The following theorem is the key result which will allow us to

understand the U-shaped curve.

Theorem 1 (Bias variance decomposition).

MSEθ̂ = var(θ̂) + E
[
θ̂ − θ

]2
(6)

Proof. Using the definition of variance

var
(
θ̂ − θ

)
= E

[
(θ̂ − θ)2

]
− E

[
θ̂ − θ

]2
.

Since θ is a constant, var
(
θ̂ − θ

)
= var

(
θ̂
)
, so rearranging terms yields the result.
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3.2.5 Maximum Likelihood (optional)

Sometimes it is quite clear what the estimator for a parameter should be. This is the case for q in the Bernoulli

distribution. However, we will find this is not always the case, so it is useful to have a more systematic way

of finding estimators. Recall that the probability distribution for the binomial distribution is

P (Y ) =

(
n

Y

)
qY (1− q)n−Y (7)

In statistics, we sometimes call this the likelihood and denoted P (Y ) = L(Y |q). The notation here is suggesting
that we think of P as a distribution which is conditioned on a particular value of the parameter. More generally,

the likelihood is defined as the probability we say a data set given the parameters. This notation and terminology

foreshadows Bayesian thinking, wherein one thinks of the parameter as random variables themselves – more

on this later. For now, notice that Equation (7) tells us how likely it is to observe k YES among n people

surveyed. Then, it seems reasonable that this number should not be very small, since that would mean our

survey results are an anomaly. More generally, the larger L(Y |q) is the more likelihood our results are. This
suggests one a way to estimate determine q: We can take as our estimate q̂ the value which makes L(Y |q)
largest. In other words, we are finding the value of q which makes the data the most likely, and we will call

this the maximum likelihood estimate. You can do this using calculus (try it!) to determine that the value of q

which makes (7) largest is

q̂MLE =
Y

n
For a Normal distribution with mean and variance µ and σ, the MLE estimators are the usual sample mean and

standard deviation which we have already been exposed to.

3.3 Single-predictor linear regression model

Regression models model input-output relationships. The input is the predictor (X) and the output is the

response variable (Y ). Recall from the previous unit that a linear regression model is defined by

Y = β0 + β1X1 + ϵ, ϵ ∼ Normal(0, σ2ϵ ).

Written another way

Y |X ∼ Normal(β0 + β1X, σ2ϵ ). (8)

It should be noted that in regression modeling the distribution of the predictor is often not specified. However,

we should always think about what this is, because it plays an important role in the inference process as I will

discuss below. For this reason, I often think of a linear regression model as a model of both variables:

X ∼ some distribution with mean µx and variance σ2x
Y |X ∼ Normal(β1X + β0, σ2).

(9)

We saw examples with Bernoulli and Normal predictors in Unit 2, but this involved looking at differences of

conditional expectations. In general, this is a feasible way to estimate β1 because (1) we may not have data

points whose X values differ by 1 and (2) even if we do it is not clear how to utilize all the data to compute

β1. We would like some way to approximate β1, a quantity which is interpreted as differences of conditional

expectations, without actually computing those conditional expectations. In particular, we would like to express

β1 in terms of marginal expectations. To do so, we will need the idea of covariance, which has already appeared

in the examples from the previous section.

3.3.1 Covariance

The covariance of two variables is defined by

cov(X, Y ) = E[XY ]− E[X]E[Y ] (10)

This is what the function
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¿ np.cov(x,y)[0,1]

computes in Python. The reason for the [0, 1] is that the covariance function in numpy actually computes a

2D array (a Matrix), where the off diagonal entries are the covariance. The diagonal entries are the variances.

Note that another way to write this is (check yourself!)

cov(X, Y ) = E[(Y − E[Y ])(X − E[X)]

so if we replaced X with Y , this becomes the variance. Hence the name covariance – thus the name.

3.3.2 Paramater estimates

We first recall that from the definition of variance we can write E[X2] as

E[X2] = var(X) + E[X]2 = σ2x + µ
2
x .

Therefore we can write

E[XY ] = E[XE[Y |X]] = E[X(β1X + β0)] = β1E[X2] + β0E[X]
= β1σ

2
x + β1µ

2
x + β0µx

E[Y ] = β1µx + β0

and combining everything we find

cov(X, Y ) = β1σ
2
x =⇒ β1 =

cov(X, Y )

σ2x

regardless of the distribution of X (assuming σ2x <∞).
The crucial observation is that the covariance allows us to relate the parameter β1 (a difference in conditional

expectations) to over the joint and marginal distributions X and Y without the need to explicitly condition,

as was done for the binary predictor example. If we have data (X1, Y2), . . . , (Xn, Yn).

β1 ≈
∑n
i=1

(
xi − X̄

) (
yi − Ȳ

)∑n
i=1

(
xi − X̄

)2
Perhaps surprisingly, this is also an unbiased estimator! We can then estimate β0. Using E[Y ] = β1µx + β0 we

have

β0 = E[Y ]− β1µx ≈ β̂0 = Y −

(∑n
i=1

(
xi − X̄

) (
yi − Ȳ

)∑n
i=1

(
xi − X̄

)2
)
X

Finally, we want to estimate σ2ϵ , which is the same as the conditional variance var(Y |X) in our model. From
the definition of ϵ,

ϵ = Y − β0 − β1X (11)

In practice we need to approximate the ϵ using our data and fitted line. The approximations are called residuals

and defined by

ri = Yi − β̂0 − β̂1Xi . (12)

A natural approach to estimating σ2ϵ would be to estimate the empirical variance in the usual way, leading to

1

N − 1

N∑
i=1

(ri − r)2 (13)

but we need to remember that (1) we know E[ϵ] = 0, we can simply set r = 0 and (2) we need to account for

the fact that β̂0 and β̂1 have also been obtained from the data. The correct unbiased estimator is

σ̂2ϵ =
1

N − 2

N∑
i=1

r2i (14)

where the N−2 corrects for the fact that the differences are biased to be smaller due to our using the Yi points
to estimate the regression coefficients.
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3.3.3 Least square interpretation

There is another way to arrive at the estimators we have obtained, which is the fine the slope and intercept

that minimize the residuals directly. Specifically, we find the minimum of the function

RSS =

n∑
i=1

r2i , ri = Yi − (β̂1Xi + β̂0)

as a function of β̂1 and β̂0. This can be intuitively justified You might wonder how this approach is related

Figure 3:

Example 5 (Marketing data). Here we consider the some on advertising budgets and sales for a company.

We will explore whether the budget for TV advertisements is associated with higher sales.

Questions: Fit the data to a linear regression model with the TV budget at the predictor and sales as the

response variable.

(a) Fit linear regression model: What are the estimates of β1 and β0?

(b) Visualize the data: Plot the regression long along with a scatter plot of the data.

(c) Accessing model assumptions: Using the fitted values of β1 and β0, simulate 10 “fake” data sets

which have the same number of points as the real data set and the same x values. Make plots of

these and compare to the real data.

Solution: see colab notebook.

3.4 Coefficient of determination and correlation

3.4.1 Coefficient of determination

In most applications the goal of regression modeling is predict the response (Y values) given the predictor (X

values). Thus, it is natural to look for metrics which assess how well these predictions can be made. To gain an

intuition about this, let’s think about the best case scenario for making predictions. This would be that σϵ = 0

(and β1 ̸= 0), because then Y is determined deterministically for a given X. Predictions should get worse as
σϵ grows, because σϵ measure the variability in the Y values for a fixed X. So the worst case is that σϵ is very
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large (or β1 = 0), but large relative to what? σ
2
ϵ has the same units as Y . This means we need to compare it

to something that has Y units, so we compare to the overall (marginal) variance in Y , σ2Y = var(Y ). Note that

(check yourself!)

σ2Y = β
2
1σ
2
X + σ

2
ϵ ≥ σ2ϵ (15)

Notice that the overall variance in Y is the sum of the variation from ϵ (random factors independent of X) and

β21σ
2
X (the spread of the X values, which is weighted by the squared slope).

This discussion motivates coefficient of determination, which is

ρ2 = 1−
σ2ϵ
σ2Y
. (16)

Another way to write ρ2 is

ρ2 = 1−
var(Y |X)
var(Y )

. (17)

This is between zero and one. When ρ2 = 1, this is saying nearly all the variation in Y values is a result of

variation in X. Notice that ρ2 = 0 when σϵ2 = σ
2
Y . In this case, knowing the X values (e.g. knowing whether

some is in the control or treatment group) does not change how variable the Y values are (e.g. the blood

pressure). This means all the variation in Y values is due to things other than X.

When we estimate ρ2 from data, we call it R2. The estimator has the form

R2 = 1−
∑N
i=1 r

2
i∑N

i=1(Yi − Y )2
(18)

It should make sense why this is the estimator of ρ2.

3.4.2 Correlation

There is another way to arrive at ρ2, which is to consider the regression model after standardizing the predictor

and response variable. This is natural thing to do since we want to measure the association between two

variables on a dimensionless scale. Let

ZX =
X − µX
σX

, ZY =
Y − µY
σY

(19)

We then have

ZY =
β0 + β1X + ϵ− µY

σY
= (20)

Because µY = β0 + β1µX , we simplify:

ZY =
β1(X − µX)
σY

+
ϵ

σY
=
β1σX
σY
ZX +

ϵ

σY
.

Thus,

ZY
∣∣ZX ∼ Normal(β1σX

σY
ZX ,
σ2ϵ
σ2Y

)
.

This is a simple linear regression of standardized response ZY on standardized predictor ZX with slope

b =
β1σX
σY
.

The slope b represents the expected change in standard deviations of Y associated with a one standard deviation

change in X.

Motivated by this, we define the correlation coefficient ρ as this regression slope:

ρ := b =
β1σX
σY
.
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Using the earlier result that

cov(X, Y ) = β1σ
2
X ,

we can write

ρ =
β1σX
σY

=
cov(X, Y )

σXσY
.

Usually it is the last equation that is used to define covariance, because this can be defined for any two random

variables and doesn’t require an underlying regression model (which is where the β1 comes from). Notice that

if we begin with two random variables which have standard deviations 1, then ρ and covariance are the same

thing. There is a very import result in math called the Cauchy-Schwarz inequality, which tells us 1 ≤ ρ ≤ 1.
Now to show that this is indeed the same as ρ2. To do so, we recall that σY = β

2
1σ
2
X + σ

2
ϵ . Therefore,

ρ2 =
β21σ

2
X

σ2Y
=
σ2Y − σ2ϵ
σ2Y

(21)

Thus, the approach of standardizing and computing a unitless regression slope ultimately leads to the same

metric for the strength of association as comparing the variance conditioned on the predictor to the overall

variance.

3.4.3 Regression to the mean

Regression to the mean arises naturally in the context of repeated measurements or time series data when the

correlation between successive observations is less than perfect. Consider a time series {Xi}, where Xi is the
measurement at time i . Suppose Xi and Xi+1 are random variables with the same distribution, mean µ and

variance σ2, but are not perfectly correlated. Since we can standardize them aways, we may take µ = 0 and

σ = 1. We model the noise via a linear regression model, and it must be that

Xi+1|Xi ∼ Normal(ρXi , 1− ρ2). (22)

3.4.4 Regression to the mean

3.5 p-values Hypothesis testing

In statistics, we might infer parameters not because we are interested in specific values, but rather because

we would like to use them to make a decision. For example, in a clinical trial, we might be interested in

deciding whether a candidate drug is worth moving forward with. This problem is often framed in terms of

hypothesis testing, in which we assign a probability to a particular hypothesis or its converse. In rather abstract

terms, the basic procedure of hypothesis testing is as follows:

1. Come up with a null hypothesis. For example, this might be that the mean of some variable is zero. We

are interested in determining whether we can rule this hypothesis out.

2. Compute something called a test statistic, denoted T̂ , which like any estimator is simply some quantity

we compute from our data.

3. Next, we do a sort of probabilistic thought experiment and ask: What is the chance that we would observe

a value of T̂ at least as large as the value we measured IF our hypothesis was in-fact true. The result is

the p-value.

Example 6 (hypothesis testing for a linear regression model with binary predictor). Consider the example

of a clinical trial again. The effect of a drug, denoted Y (e.g. blood pressure is measured in two groups)

is measured in two groups. One group is given a placebo, the other (the treatment group) is given a drug.

Let X = 0 for people in the control group and X = 2 for those in the treatment group. For simplicity we

10



will assume that there are N/2 people in each group. We can model Y with a regression model

Y |X ∼ Normal(µC(1−X) + µTX, σ2)

We will assume σ2 is know! This greatly simplifies the calculations! This is just a linear regression

model since we could write

µC(1−X) + µTX = µC + (µT − µC)X = β0 + β1X

where

β0 = µC

β1 = µT − µC .

We could estimate β0 and β1 as we always do in a linear regression model. We could also simply perform

inference on the mean and of a Normal distribution within each group to obtain estimators of µC and µT .

For simplicity, let’s pretend σ is known for simplicity. This makes things simple, because then the sample

distributions are

µ̂C ∼ Normal
(
µ̂C ,

σ2

N/2

)
µ̂T ∼ Normal

(
µ̂T ,

σ2

N/2

)
.

Thus the (estimated) sample distribution of β1 is

β̂1 ∼ Normal
(
β̂,
4σ2

N

)
.

In this case, our null hypothesis will be that β1 = 0; that is, there is no effect of the drug. As our test

statistic, we measure how far β1 is from zero in standard deviations:

T̂ =
β̂1

se(β̂1)

Remember that since we know σ, se(β̂) is known and therefore, from the perspective of the sample

distribution, this is just dividing by a constant. Now, let β̂∗1 be the random variable representing the

measured effect under the null hypothesis. Another way to say this is that β̂∗1 represents a measurement

of β1 from a replica generated under the assumption that β1 = 0. Therefore, β̂
∗
1 will have a distribution

centered at zero and with a standard deviation se(β̂1). This means the distribution of β̂
∗
1 is nothing but

the sample distribution shifted to zero, or

β̂∗1 ∼ Normal
(
0,
4σ2

N

)
At this point we can answer the question posed in step 3: If the null hypothesis was true, how likely

would we be to observe a value of T̂ larger than the one we did? This is determined by the p-value:

pv = P (|T̂ ∗| > |T̂ ||T̂ ) (23)

where T̂ ∗ is the test statistic computed from β̂∗1 and the probability is taken over all the distribution of T̂
∗,

while T̂ is given by our data (hence why I use the conditioning notation). pv , like T̂ , is a function of the

data. See the python notebook were we compute pv with simulations.
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The above example is very simple because we assume that σ is known and we have only a binary predictor.

In reality, the computation of p-values is much more complex, however the principle and interpretation is the

same! Interpreting the p-value If the p-value is very small, then it is highly unlikely we would have observed

what we did when the null hypothesis was true. In this case, we can REJECT the null hypothesis as false.

Usually some threshold is set for this, and if the pv is below that threshold we say our result in statistically

significant. On the other hand, if pv is not small, it does not necessarily mean the null hypothesis is true.

A result is said to be statistically significant if pv < 0.05. Visually, we can see that β1 is statistically significant

exactly if 0 is not contained in the confidence interval!

The p-value is all about the “tail” of the sample distribution – “tail” usually just means the ends of the

distribution. Naturally there is connection between p-values and confidence intervals, which also measure the

width of the sample distribution. To illustrate the connection, we will again assume σ is known. Since the

the sample distribution can be obtained by shifting the distribution of β̂∗1 to β̂1, the p-value, pv , is exactly the

chance of being outside the interval [β̂1 − |β̂1|, β̂1 + |β̂1|]. Therefore, recalling the interpretation of confidence
intervals, β̂1 will fall in the confidence interval with probability pv when the null hypothesis is true. If σ isn’t

known all this is only approximately true, but intuition is still.

Figure 4: (left) The (two-sided) p-value and (right) the relationship between pv and the confidence interval.

12



Exercises

Exercise 1 (Bias and consistency ❏): Let

X ∼ Bernoulli(q)

and X1, . . . , XN denote N samples of X. For each of the following estimators of q, (i) write down the standard

error and (ii) state whether they are un-biased and/or consistent

(a)

q̂0 =
1

N

N∑
i=1

Xi

(b)

q̂1 =
Y

N
+
1√
N
, Y =

N∑
i=1

Xi

(c)

q̂2 =
1

⌊N/2⌋

⌊N/2⌋∑
i=1

Xi

The notation ⌊n⌋ means the floor; that is, the largest integer less than n. For example, ⌊101/2⌋ =
⌊50.5⌋ = 50.

Exercise 2 (Estimator of mean in exponential model): Let

T ∼ Exponential(λ).

Recall that E[T ] = 1/λ. We can estimate E[T ] via the sample average of measurements T1, . . . , Tn,

E[T ] ≈ T =
1

n

n∑
i=1

Ti .

This suggests that a natural way to estimate λ is by

λ̂ =
1

T
=

1
1
n

∑n
i=1 Ti

.

(a) The goal of the first part of this problem is to show, using simulations, that this is in-fact a biased

estimator of λ, although the bias decreases with n. To achieve this, you should do the following:

• Make a list of 100 values of λ. You could use any range, but I picked between 0.2 and 2.

• For each value of λ,

– simulate 10000 replicates of an experiment, where each replicate includes n = 5 values of T .

– For each of these replicates, compute λ̂ as defined above.

– Then estimate the average E[λ̂] and save this value in a list.

• Make a plot of λ vs.
∣∣E[λ̂]− λ∣∣.

(b) (optional – ungraded) Consider the case n = 2. Prove that

E[λ̂] = E

[
1

T

]
≥ λ

This is a special case of Jenson’s inequality.
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Exercise 3 (Earnings data): Consider the earnings data. This can be loaded with

¿ df = pd.read˙csv(”https://raw.githubusercontent.com/avehtari

¿ /ROS-Examples/master/Earnings/data/earnings.csv”)

In this exercises, you will study the association between earnings and gender. In particular, you will explore

how this depends on height. Later we will see there is a better way to answer this question by performing a

regression with multiple predictors, but taking this more elementary approach will elucidate some key aspects

of regression analysis.

(a) What do you expect the association between gender and earnings to be? Where do you expectations

come from (news, intuition, other courses you’ve taken)?

(b) Using stats models, perform a linear regression on with gender (the column “male”) as the predictor and

earnings as the response variable. You can either use “earnk” or “earn”, just keep track of the units.

Then answer the questions

• Is there a statistically significant effect?

• Is the direction and size of the effect what you expected?

(c) Using stats models, perform a linear regression with height as the predictor and earnings as the response

variable. Answer the same questions which are posed in part (a).

(d) You should have found there is an association between both gender and earnings, as well as height and

earnings. A natural question is whether the association between height and earnings is simply a byproduct

of the fact that men are taller on average. To answer this question, separate the data into males and

females, then fit the linear regression model with height as a predictor separately for each group.

(e) Based on the results from the previous problem, what do you conclude? Is the association between height

and earnings solely due to the association between gender and heights? Do you think it is partially due to

the height?

Exercise 4 (Estimating slope ❏): 1. Estimate the regression slope of the following dataset by hand

X Y

1 2

2 3

3 5

4 6

5 8

2. What happens when you add a new data point at (X6, Y6) = (100, 3)? The numbers don’t work out as

nicely, so you can using Python or LLM. Now try changing the X and Y of the new datapoint. How does

the slope change?

Exercise 5 (Linear regression model parameters ❏): Suppose that for a given linear regression model it is found

that β̂1 = 1/2, σ̂ϵ = 1 and σ
2
X = 4. What is your estimate of R

2?

Exercise 6 (Statistical significance – optional challenge): Show (using math OR simulations) that it is possible

to conduct two experiments (let’s use clinical trials as an example) so that ∆µ̂ (using the same notation as my

notes) is statistically significant for one experiment and not the other, yet the difference between ∆µ̂ between

the two experiments is not statistically significant. Here, by statistically significant I mean the p-value is < 0.05.
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Exercise 7 (Model with conditional variance): Consider the model

X ∼ Bernoulli(q)
Y |X ∼ Normal(a,X + 2(1−X))

(a) Is this a linear regression model (for the variable Y ) as defined in class?

(b) Compute cov(X, Y ).

(c) Confirm your answer by making a plot of the covariance as a function of q from a samples of 10000 (x, y)

points.

Exercise 8 (Swapping response and predictor variables): Consider the linear regression model

X ∼ Normal(µx , σ2x )
Y |X ∼ Normal(β1X + β0, σ2ϵ )

This is a regression model for Y . The goal of this problem is to understand the distribution of X conditioned

on Y . That is, we would like to understand the corresponding regression model for X. This is important in

practice and it will also sharpen you understanding of what the covariance really means.

For some additional motivation, suppose that there is no noise in Y |X (meaning σ2ϵ = 0). Then

Y = β1X + β0 =⇒ X =
1

β1
Y −

β0
β1

so the slope of X vs. Y is 1/β1. We could try adding a normal random variable Z ∼ Normal(0, σ2ϵ ) to represent
the noise in Y |X and then solve this again. This would lead us to to

Y = β1X + β0 + Z =⇒ X =
1

β1
Y −

β0
β1
+
Z

β1

It is tempting to conclude that Y |X follows a Normal distribution with mean Y/β1−β0/β1 and variance σ2ϵ /β21 .
This is however false – see part (c). In this problem you will derive the correct formula.

(a) Based on the formula for covariance derived in class, we know

cov(X, Y ) = β′1σ
2
y .

where β′1 is the regression slope on X vs. Y and σ
2
y is the marginal variance of Y . eUsing(1) cov(X, Y ) =

cov(Y,X) (interchanging the role of X and Y doesn’t change the covariance) and (2) the marginal variance

of Y is σ2y = β
2
1σ
2
x + σ

2
ϵ , derive a formula for β

′
1.

(b) Using the result of part (a), show that when σ2ϵ → 0 we retrieve the “naive” formula β′1 = 1/β1.

(c) Why is the naive formula 1/β1 incorrect when σ
2
ϵ > 0? In particular, why can’t we simply solve for X in

terms of Y to obtain the regression equation? Hint: does Y |Z have the same distribution as Y ?
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