
Midterm Practice

September 30, 2025

Instructions

• You have the entire class period to complete the exam.

• You may have a one page (single-sided) “cheat sheet” which must be turned in with the exam, but no
electronics (including calculators)

• Each problem is worth 5 points.
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Exercise 1 (A conditional Bernoulli model): Suppose

X ∼ Bernoulli
(
1
2

)
, Y | X ∼ Bernoulli

(
1
4 (1−X) +

3
4 X
)
.

Compute E[X | Y = 1].
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Exercise 2 (Confidence intervals): An experiment is conducted to see if a certain cancer drug works. The

experiment involves treating N cells with a drug and counting the number Y that survive. The goal is to

estimate the probability a cell survives. If the real probability is q = 1/4, how many cells are needed for there

to be a 95% chance the estimate is within 1/10 of this q?
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Exercise 3: Let X ∼ Bernoulli(q) and X1, . . . , XN be iid samples of X. Let Y =
∑N
i=1Xi . Consider the

estimator

q̂L =
Y + 1

N + 2
.

Derive the mean squared error and identify the bias and variance.
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Exercise 4 (Translating code to mathematics): Up to a few significant digits, what will the following code print?

¿ import numpy as np

¿ def SomeModel(num˙samples):

¿ z = 0.0

¿ for j in range(10):

¿ z = z + np.random.binomial(10,0.5,num˙samples)

¿ return z

¿ z = SomeModel(10000000)

¿ print(np.var(z))
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Exercise 5: Consider a linear regression model with two predictors

Y = β0 + β1X1 + β2X2 + ε, ε ∼ Normal(0, σ2ε),

where

X1 ∼ Normal(µ1, σ21), X2 ∼ Normal(µ2, σ22).

Assume X1 and X2 are independent and both are independent of ε. What are the marginal mean and variance

of Y ? Is Y normal?
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Solutions

1. A conditional Bernoulli model. We have

P(Y = 1) = 1
2 ·
1
4 +

1
2 ·
3
4 =

1
2 . (1)

Also,

P(X = 1, Y = 1) = 1
2 ·
3
4 =

3
8 . (2)

Hence

E[X | Y = 1] = P(X = 1 | Y = 1) =
3
8
1
2

= 3
4 . (3)

2. Confidence intervals. Let q̂ = Y/N for Y ∼ Binomial(N, q) with q = 1
4 . By the normal approximation,

P

(
|q̂ − q| ≤ z

√
q(1− q)
N

)
≈ 0.95, (4)

with z ≈ 2 for 95% confidence.
We require

2

√
q(1− q)
N

= 0.1. (5)

Solving,

N =
4 q(1− q)
0.12

=
4× 3

16

0.01
=
0.75

0.01
= 75. (6)

3. MSE of q̂L =
Y + 1

N + 2
for Y ∼ Binomial(N, q). First,

E[q̂L] =
E[Y ] + 1
N + 2

=
Nq + 1

N + 2
, (7)

so the bias is

Bias(q̂L) = E[q̂L]− q =
1− 2q
N + 2

. (8)

Next,

Var(q̂L) =
Var(Y )

(N + 2)2
=
Nq(1− q)
(N + 2)2

. (9)

Therefore, the mean squared error is

MSE(q̂L) = Bias
2 + Var =

(1− 2q)2 + Nq(1− q)
(N + 2)2

. (10)

4. Translating code to mathematics. Inside the loop we sum 10 independent draws of Binomial(10, 0.5),

hence

z ∼ Binomial(100, 0.5) (elementwise over samples), (11)

so

Var(z) = 100× 0.5× 0.5 = 25. (12)

With 107 samples, np.var(z) will print approximately

25.0. (13)

5. Linear regression with independent normal predictors. Using linearity of expectation and variance (for

independent variables) we have

E[Y ] = β0 + β1µ1 + β2µ2, (14)

Var(Y ) = β21σ
2
1 + β

2
2σ
2
2 + σ

2
ε , (15)

and by closure of the normal family under linear transformation

Y ∼ Normal
(
β0 + β1µ1 + β2µ2, β

2
1σ
2
1 + β

2
2σ
2
2 + σ

2
ε

)
. (16)
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