
Math 50 Final – Practice

Instructor: Ethan Levien

November 24, 2025

Name: Section:

Instructions

• You have 3 hours to complete the exam.

• You may have a one page (single-sided) “cheat sheet” which must be turned in with the exam, but no
electronics (including calculators).

• Each problem is worth 5 points.

• Write your solutions in the boxes.

• Don’t cheat.
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Exercise 1 (Converting code to math): Consider the following code

x1 = np.random.normal(0,1,100)

x2 = 2*x1 + np.random.normal(0,1,100)

y = x1 + x2 + np.random.normal(0,1,100)

b1 = np.cov(y,x1)/np.var(x1)

b2 = np.cov(y,x2)/np.var(x2)

What are b1 and b2 (approximately)?

Solution:
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Exercise 2 (Joint distribution): Consider the model of a time series X1, X2, X3, . . . :

Xi+1|Xi ∼ Normal(1 +Xi/2, 1/3)

(a) Write a Python function generatesim(L) to generates a simulation of L steps of this time series starting

with Xi = 0. The function should return a length L numpy array.

(b) After many steps, the process reaches a steady state where E[Xi+1] = E[Xi ]. What is the distribution of

Xi in steady-state?
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Exercise 3 (Regression model comparison): (X, Y ) data is fit to a single-predictor regression model in statsmod-

els using OLS, yielding the following output:

==============================================================================

coef std err t P¿—t— [0.025 0.975]

------------------------------------------------------------------------------

const 1.0685 0.186 5.756 0.000 0.700 1.437

x1 1.9622 0.177 11.062 0.000 1.610 2.314

==============================================================================

A second predictor X2 is then included in the model, which yields the following output:

==============================================================================

coef std err t P¿—t— [0.025 0.975]

------------------------------------------------------------------------------

const 1.0001 0.011 92.003 0.000 0.979 1.022

x1 0.9810 0.012 82.470 0.000 0.957 1.005

x2 2.0122 0.012 168.877 0.000 1.989 2.036

==============================================================================

If X2 and X1 were fit to a linear regression model with X2 as the response variable, what would be the regression

slope?

Solution:
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Exercise 4 (Sample distribution): Consider the model

Y1 ∼ Normal(β1X1 + β2X2, σ2ϵ )

After fitting the model, we find β̂1 = 100, β̂2 = −101, σ̂2ϵ = 1/4. The model is then fit to a different data set
and it is found that β̂1 = −100, β̂2 = 100.4.

(a) Is cov(X1, X2) likely to be positive or negative for the fitted data?

Solution:

(b) Based on this information is it possible that R2 is very close to 1?

Solution:
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Exercise 5 (Interactions): Consider the the two predictor linear regression model with an interaction term:

Y = β1X1 + β2X2 + J1,2X1X2 + ϵ

The following plot shows data generated from such a model.

Figure 1:

What are the values of β1, β2 and J1,2?

Solution:
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Exercise 6 (Orthogonality): Consider the features φ1(x) = x
3 and φ2(x) = x

2.

(a) Are these orthogonal with respect to X ∼ Uniform(−1, 1)? (in the sense that E[φ1(X)φ2(X)] = 0)

(b) What is an example of a distribution for X such that φ1 and φ2 are not orthogonal?
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Exercise 7 (Bayesian posterior): Consider a the Bayesian model σϵ and β1, but unknown intercept with Normal

priors:

β0 ∼ Normal(0, τ20 ) (1)

Y |X, β ∼ Normal(β0 + β1X, σ2ϵ ) (2)

Calculate the posterior of β0.
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Exercise 8 (Missing data): You are given data with predictors X1, X2. You want to fit a linear regression model

Y = β0 + β1X1 + β2X2 + ϵ

but some of the X2 values are have been corrupted and are not reliable. One idea to handle this is called

imputation and involves generating the missing values X2.

Explain how you could implement imputation assuming you are a given dataframe with rows Y,X1, X2, C

where C = 1 for the rows with corrupted data and C = 0 otherwise. What assumptions are being made for the

procedure to be unbiased?

Solution:
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Solutions

1. b1 is the regression coefficient with only X1 as a predictor and the regression coefficient β1,2 of X1 on X2
is given to be 2 as well as β1 = β2 = 1. Thus we have b1 = 1+2 = 3. The regression coefficient of X2 on

X1 is β2,1 = cov(X1, X2)/var(X2) = var(X1)β1,2/(2
2 + 1) = 1× 2/5 = 2/5. Hence b2 = 1+ 2/5 = 7/5.

2. (a) One valid implementation:

def generatesim(L):

X = np.zeros(L)

for i in range(1,L):

X[i] = 1.0 + 0.5*X[i-1] + np.random.normal(0.0, np.sqrt(1/3))

return X

(b) In steady-state we have the marginals are equal so µX = E[Xi+1] = 1 + E[Xi ]/2 = 1 + µX/2. Thus

µX = 2. Similarly σ
2
X = σ

2
X/4 + 1/3. Thus σ

2
X = 4/9 and Xi ∼ Normal(2, 4/9).

3. We are given the single predictor regression coefficient β̂′1 ≈ 2 and the two predictor model coefficients
β̂1 ≈ 1, β̂2 ≈ 2. Using β̂′1 = β̂1+ β̂2β1,2 we deduce the coefficient of X1 with X2 as the response variable,
denoted β1,2 here, is β1,2 ≈ 1/2.

4. (a) This suggests the β̂1 and β̂2 are negatively correlated and therefore X1 and X2 are positively corrected,

hence cov(X1, X2) > 0. (b) Yes, because even though we know σ̂
2
ϵ we aren’t given σ

2
Y , which could be

quite large especially with such large values of β̂i .

5. β2 is the slope of X2 vs. Y when X1 = 0, which is approximately 0 in the plot. β2+ J1,2 is the slope when

X1 = 1, which appears to be 1. β1 is the expected difference in Y between X1 = 0 and X1 = 1 groups

when X2 = 0, which appears to be 0. In summary, β1 = β2 = 0 and J1,2 = 1.

6. (a) With X ∼ Unif(−1, 1),

E[φ1(X)φ2(X)] = E[X
5] =

∫ 1

−1
x5 · 12 dx = 0, (3)

so they are orthogonal. (b) Any non-symmetric distribution makes E[X5] ̸= 0. For example, if X ∼
Unif(0, 1),

E[X5] =
1

6
̸= 0, (4)

so they are not orthogonal.

7. The (frequentist) estimator β̂0 = Y−β1X. This is Normal when conditioned on β0: β̂0|β0 ∼ Normal(β0, σ̂2ϵ /N).
If we invert this regression model we get

β0|β̂0 ∼ Normal
(
β̂0

τ2

τ2 + σ2ϵ /N
,
τ2σ2ϵ /N

τ2 + σ2ϵ /N

)
(5)

8. Using rows with C = 0, fit

X2 = α0 + α1X1 + ζ, (6)

and estimate σ̂2ζ ≈ var(ζ). For each C = 1 row,

X̃2 = α̂0 + α̂1X1 + ζ̃, ζ̃ ∼ Normal(0, σ̂2ζ ). (7)

Then we fit

Y = β0 + β1X1 + β2X̃2 + ϵ (8)

on the completed data. We have assumed C is independent of X1 and X2.
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