
Math 50 Final – Additional practice problems

November 19, 2025

Exercise 1: Suppose X1 and X2 are Normal random variables and

Σ =

[
2 −1/2
−1/2 3

]
(1)

Find the conditional distributions of X1|X2 and X2|X1. Assume X1 and X2 have zero mean.

Exercise 2: Gaussian process models come from marginalizing over the prior distribution in a nonlinear regression

model of the form

βj ∼ Normal(0, τ2j ), E[βiβj ] = 0, i ̸= j (2)

f (x) =

∞∑
j=1

βjφj(x) (assuming the sum converges with probability 1) (3)

For two points x1 and x2, find the distribution of f (x1)|f (x2). The answer should be written in terms of a
function K(x, x ′) =

∑∞
j=1 τ

2
j φj(x)φj(x

′) called a kernel.

Exercise 3: Which of the following indicates that the assumptions of a linear regression model may be violated?

Explain your answer

1. A low R2

2. Large confidence intervals relative to the values of the fitted coefficients

3. Cross validation is performed and finds the model has a high variance but a low bias

4. None of the above

Exercise 4: Consider the regularized least squares estimator β̂R which minimizes

N∑
i=1

(Yi − βXi)2 + λ2(β − b)2 (4)

Write β̂R in terms of the least squares estimator β̂.

Exercise 5: You are using Laplace’s Rule of Succession to estimate the outcome of an election with two candi-

dates based on polling data. Suppose the true fraction of voters supporting candidate A is 0.7. Approximately

how many people must be pooled in order to ensure the 95% interval does not overlap with the prior odds of

1/2?
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Exercise 6: Consider the model with interaction term

Y = X1 −X2 + 3X3 + 2X1X2 + 0.5X1X3 + ϵ (5)

If X1 ∼ Normal(0, 2), what is Y |X2, X3? Is this satisfy the assumptions of a linear regression model?

Exercise 7: Consider a linear regression model with no intercept (β0 = 0) and mean zero predictor (E[X] = 0).

Derive the sample distribution of β̂1 in terms of σ
2
ϵ and σ̂

2
X (assuming σ

2
ϵ is known). By derive I mean using

properties of normal distributions, expectation, conditional expectation etc. .

Exercise 8: Suppose that a certain parameter θ in a model has a sample distribution

θ̂ ∼ Normal(θ, 0.1) (6)

where θ is the true value. Now suppose Bayesian inference is performed with priors

θ ∼ Normal(0, 2) (7)

What is the posterior distribution of θ?
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Solutions

1. Using the relation cov(X1, X2)/var(X1) = β1,2 the regression slopes. The noise terms are found from

σ2ϵ2 = σ
2
X2
−β1,2σ2X1 (the notation should be self explanatory here). This yields X1|X2 ∼ Normal(−

1
6X2,

23
12)

and X2|X1 ∼ Normal(− 14X1,
23
8 )

2. You don’t need to know about Gaussian processes to solve this. Use usual regression slope covariance re-

lations: f (x1)|f (x2) ∼ Normal
(
K(x1,x2)
K(x2,x2)

f (x2), K(x1, x1)− K(x1,x2)
2

K(x2,x2)

)
where K(x, x ′) =

∑∞
j=1 τ

2
j φj(x)φj(x

′)

3. (4) None of the above. Low R2 indicates poor model fit but doesn’t violate assumptions. Large confidence

intervals suggest uncertainty but not assumption violations. High variance/low bias from cross-validation

indicates overfitting, not assumption violations.

4. If we take the derivative with respect to β as set it equal to zero, we get

β̂R =

∑N
i=1XiYi + λ

2b∑N
i=1X

2
i + λ

2
(8)

=

∑N
i=1XiYi∑N
i=1X

2
i

1

1 + λ2/(Nσ̂2X)
+ b

λ2/(Nσ̂2X)

1 + λ2/(Nσ̂2X)
(9)

= β̂
1

1 + λ2/(Nσ̂2X)
+ b

λ2/(Nσ̂2X)

1 + λ2/(Nσ̂2X)
(10)

This shows β̂R interpolates between β̂ and b with weights determined by λ
2/(Nσ̂2X).

5. Using Laplace’s Rule estimator q̂ = (Y + 1)/(N + 2) where Y ∼ Binomial(N, 0.7). We have E[q̂] =
(0.7N+1)/(N+2) and var(q̂) = 0.7 ·0.3 ·N/(N+2)2. For large N, q̂ ≈ Normal(0.7, 0.21/N). The 95%
interval is approximately [0.7− 1.96

√
0.21/N, 0.7 + 1.96

√
0.21/N]. For this not to overlap with 0.5, we

need 0.7− 1.96
√
0.21/N > 0.5, giving N > (1.96

√
0.21/0.2)2 ≈ 21.

6. Taking the mean and variance we get Y |X2, X3 ∼ Normal(−X2 + 3X3, 2(1 + 2X2 + 0.5X3)2 + σ2ϵ ). This
DOES NOT satisfy the (usual) linear regression assumptions because of the dependence on X terms in

the variance.

7. See class notes.

8. The statement of the sample distribution can be recast in Bayesian framework as the distribution of the

estimator θ̂ conditioned on θ, which combined with the prior gives

θ ∼ Normal(0, 2) (11)

θ̂|θ ∼ Normal(θ, 0.1). (12)

Thus the slope of θ vs. θ̂ is 1× 2/(0.1 + 2) = 20/21 and var(θ|θ̂) = 2/21. That is,

θ|θ̂ ∼ Normal(20/21θ, 2/21) (13)
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