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1. Motivation

So far we have considered the linear model:

(1) Y = b+
∑

aiXi + ϵ

where ϵ follows is mean zero Normal random variable. We understand that this
can be formulated as the conditional distribution of Y given X:

(2) Y |X ∼ Normal

(
b+

∑
i

ai, σϵ

)
We know that we have some formulates for unbiased estimators of b, ai and σϵ in
terms of our data. Specifically, the formulas for the ai come from the covariances
and variances of the predictors and response variables in complicated ways (but
are straightforward to compute). After recognizing that we can select both Y and
Xi to be function of various variables in our data (by transformations and addition
of features), this modeling framework gives the ability to expand our model indef-
initely. The remaining limitation is that of the structure of the noise: Since the
noise is Gaussian, we are limited to studying only certain times of randomness.

What if we want to predict a binary variable? As an example, let’s consider
the problem of predicting whether someone supports same sex marriage based on
some information about them, such as age and gender. As a “warm up" to get
us thinking about this problem, will start with the binary predictor sex (which is
restricted to Male or Female is this dataset). Our response variable Y is one if
someone supports same sex marriage and zero otherwise. Thus Y is a Bernoulli
random variable and thus does not follow a normal distribution regardless of which
predictors we condition on. In this case, we can frame the problem of modeling
the association between X and Y as two separate inferences of Bernoulli random
variables:

Y |(X = 0) ∼ Bernoulli(q0)(3)
Y |(X = 1) ∼ Bernoulli(q1)(4)

Hence, we can simply break the data up into two groups and estimate q0 and q1 as
we’ve done before with Bernoulli random variables.

Alternatively, we can frame this as a regression problem

(5) Y |X ∼ Bernoulli(q(X))

where

(6) q(X) = q0(1−X) + q1X = X(q1 − q0) + q0

Structurally, this is similar to the linear regression. Our model for the response
variable Y conditioned on X is a distribution in which the parameters depend
linearly on X. In the linear regression context, it is the mean of the Normal dis-
tribution that depends linearly on X while here it is the chance for Y = 1. In fact,
if in our data k people support and N − k do not, we compute Ỹ = k/N . We could
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then have a linear regression model (with Normal noise) for Ỹ in terms of X. We
will later see that there are some advantages to working directly with Y !

More generally, in order to capture binary noise, we might start with the model
(7) Y |X ∼ Bernoulli(q).

Here, q is the sole parameter and therefore in order for the distribution of Y to
depend on X, q must depend on X. Naively, we might simply take q(X) to be

(8)
∑

aiXi

but this has a problem if X are continuous predictors, since we must have 0 < q < 1.
In order to ensure this is the case, we set

(9) W =
∑
i

aiXi

and set q = h(W ), but we want to select h so that as W → ∞, q → 1, and as
W → −∞, q → 0. The next task is to see how this is done.

2. Logistic model

2.1. The logistic function. We would ideally like to come up with a function h =
h(w) that maps w to 0 and 1. The standard choice is

(10) q(w) = logit−1(w) =
1

1 + e−w

This is called the inverse logistic function between if we solve for z, we get the
logistic function

(11) w = ln

(
q

1− q

)
To better understand how the slope and intercept b and a effect the plots, let’s

think about limiting cases. But first, think about the functions e−w and logit−1(w).
• e−w = 1 when w = 0. Thus logit−1(0) = 1

1+1 = 1
2 .

• If w is a very large positive number, e−w ≈ 0, so logit−1(w) ≈ 1
1+0 = 1.

• If w is a very large negative number e−w is huge, so logit−1(w) ≈ 1
1+∞ = 0.

Let’s imagine b = 0 (there is no intercept).
• If a is very large relative to all values of x, then w = ax will quickly become

large for small x and therefore y will very likely be 1 for positive x (and very
likely be zero for negative x)

• If a is small relative to all values of x, then w = ax will not change much
and the chance that y = 1 will be around 1/2 for most x.

To summarize, our the logistic regression model is

(12) Y |X ∼ Bernoulli

(
1

1 + e−b−
∑

i aiXi

)
Example 1. Generating data from logistic regression model

2.2. Fitting logistic regression. We can fit this in statsmodels as shown by the
following example, and much of what we’ve learned turns out to carry over.

Example 2. Logistic regression in statsmodels

Example 3. Logistic regression with real data

3. Interpreting coefficients

In a logistic regression the meaning of the coefficients is a bit tricky. This is
because their "effect" depends on the value of the predictors. Let’s think about
a model with multiple predictors.

Let’s think about the intercept first. When the predictor (or all predictors if there
are multiple) is zero,

(13) P (Y = 1|X = 0) =
1

1 + e−b
=⇒ b = − ln

(
1

q
− 1

)
We can rearrange terms to get

(14) b = ln

(
q

1− q

)
= ln

P (Y = 1|X = 0)

P (Y = 0|X = 0)

the expression (1 − q)/q is called the odds ratio, so b tells us the log odds ratio to
get y = 1 when all predictors are zero.

https://colab.research.google.com/drive/1_oMrxtIlJ-EdW1ozmlydx0A9qrA-sVKm#scrollTo=YWs_K1GfF660
https://colab.research.google.com/drive/1_oMrxtIlJ-EdW1ozmlydx0A9qrA-sVKm#scrollTo=NvKur135DQbe&line=1&uniqifier=1
https://colab.research.google.com/drive/1_oMrxtIlJ-EdW1ozmlydx0A9qrA-sVKm#scrollTo=jWjC5045V42_
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More generally, ai tells us how much the log odds ratio changes when we
chance Xi by 1 with all other predictors fixed. To see this, first note that if the
odds are q = 1/(1 + e−w), the odds ratio is

(15) ln
1/(1 + e−w)

1− 1/(1 + e−w)
= ln

1 + e−w

e−w(1 + e−w)
= ln ew = w

If we change Xi by 1, then w changes by ai.
I find this really hard to think about odds ratios. Instead, I think it is easiest

to interpret the coefficients when the logistic function is well approximated by a
linear function. This happens when

(16) w = b+
∑
i

aiXi = 0.

At w = 0, logit−1(0) = 1/2 and close to z = 0 (between −1 and 1)

(17) logit−1(w) =
1

1 + e−w
≈ 1

2
+

w

4

This leads to the divide by four rule: When the sum of predictors time coeffi-
cients is close to 0, ai/4 represents the difference in the chance that Y = 1 between
data points for which Xi differs by 1, with all other predictors fixed.

The divide by four rule gives an upper bound on how much changing Xi changes
the probability for Y to be one. In other words, the actual difference is always less
than this.

Example 4. Homocide victim data

Exercise 1: Testing divide by four rule

4. Model evaluation for logistic regression

It’s always useful to have some metric for accessing how much of the variation
in the data the model explains the data we used to fit it, even though we know
this is not the full story. For linear regression we use R2. For logistic regression
we have something called Pseudo R2. Like R2, it tells us, roughly speaking, what
fraction of the variation in Y values is explained by the predictors, but in this case
we don’t have the usual notion of residuals. Instead, we compare how likely it is to
see the particular sequence of Y values under the model, vs. how likely it would
be to see them if the chance to get Y = 1 did not depend on X:

(18) pseudoR2 = 1− ln(chance to see Y1, Y2, . . . , Yn given our model)
ln(chance to see Y1, Y2, . . . , Yn given x has no effect)

Why does this make sense? Observe the following facts:
• The chance to see a given sequence of y values of y is between 0 and 1.
• The log of a value between 0 and 1 will be negative, and will be a larger

negative number when the chance is smaller.
Thus, if we are much more likely to see the data given our model, the denominator
will be closer to 0. If we are less likely to see our data, it will be a large negative
number (but always smaller than the denominator).

It tells us how good our model is at predicting the Y values. Notice that if we
do bin the data and perform a linear regression, the R2 we get is generally MUCH
larger than the Pseudo R2. Think about why.

Example 5. Understanding Pseudo R2 with simulations

https://colab.research.google.com/drive/1_oMrxtIlJ-EdW1ozmlydx0A9qrA-sVKm#scrollTo=j8moyIWyuVQZ&line=3&uniqifier=1
https://colab.research.google.com/drive/1_oMrxtIlJ-EdW1ozmlydx0A9qrA-sVKm#scrollTo=j8moyIWyuVQZ&line=3&uniqifier=1
https://colab.research.google.com/drive/1_oMrxtIlJ-EdW1ozmlydx0A9qrA-sVKm#scrollTo=HEfVl_PA2OCE&line=1&uniqifier=1
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