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1. Linear models with features

In the context of interactions, we saw how a model can be extended by defining
a new predictor X3 = X1X2. The more general idea that we can define a new pre-
dictor which is a function of the other predictors allows us to develop very complex
and flexible models which nonetheless can be analyzed within linear regression
framework. Here, we will formalize this, beginning with the case of a single pre-
dictor.

For a single prediction, consider the model
(1) y = f(X) + ϵ

A simple example would be f(x) = b+ ax+ a2x
2. This is simply a linear model if we

define
(2) X1 = X, X2 = X2

1 .

More generally, a trick is to select a series of basis function, ϕ1, . . . , ϕm and express
f as a combination of them:

(3) f(X) =

m∑
i=1

aiϕi(X)

The function ϕi(x) are also called features.

Figure 1. An illustration of how a nonlinear dependence on our
predictor can be incorporated into the linear modeling framework
by adding a feature.

Which functions ϕ should we use? The answer of course depends on the problem
at hand. For example, we might know something about the physics of the data
we are modeling. In some cases, we may select the ϕ so that the parameters ai
have clear interpretations (as is the case in linear regression model). The following
illustrates such an example.
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Example 1. Mauna Kea Data

Exercise 1: Killing a tumor

1.1. Orthogonality. It is often to our advantage to select basis function ϕ which
contain very different “information". We know from before that ideally our predictor
variables should be uncorrelated, otherwise âi will be very correlated in the sample
distribution. Thus, ideally, we should select ϕi so that the correlation coefficient
between ϕi(X) and ϕj(X) is very small. When

(4) E[ϕi(X)ϕj(X)] = E[ϕi(X)]E[ϕj(X)]

we say that ϕi and ϕj are orthogonals with respect to the distribution of X. We
won’t get too deep into this, but it’s important to understand when you go looking
for basis functions. One can show for example, that the basis function ϕi(x) =
sin(2πx) are orthogonal with respect to

(5) X ∼ Uniform(−1, 1).

2. Direct assessment of model predictions

We have seen that any model has deficiencies and that expanding our model
always increases R2. A natural question is: Why not make our model as complex
as possible? That is, why not add as many variables as we can and nonlinear
terms? A simple answer could be given with the example of a linear regression: We
can’t draw a line through only two points. Similarly, we can’t find a unique plane in
d dimensions that goes through < d points. This suggests we must not have more
parameters in our model than data. Moreover, as the number of parameters in our
model approach the amount of data, we become unable to resolve the parameters
(the sample distributions become too wide) and interpret them in a meaningful
way.

However, if our goal is make predictions with a model, there is much more to
the story. Even before we have nearly as many parameters as data points, our
model looses its power. This is not something we can see based on the behavior
of error between the model and the data, such as R2, which always decreases as
we expand our model. Instead, we need to look at a direct assessment of out-of-
sample predictive power. Ideally, we could look at the error between the model
and the predictors for new X values. One way to access this is to break our data
up into two subsets, a training (denoted Ytrain,i) and test set (denoted Ytest,i) . We fit
the model using only the training set, and then see how well our model can predict
the values in the test set. The following examples reveals what we can learn from
this:

Example 2. Fitting polynomial data

2.1. Bais-variance tradeoff. To make sense of the results in the previous exam-
ple, let’s define a few things. We define the training error as

(6) ϵ2train = E[(Ŷi − Ytrain,i)
2]

where the average is taken over different realizations of our data and Ŷi is our
prediction of E[Y |X]. Not the relationship between R2 and the training error:

(7) R2 ≈ 1− ϵ2train
var(Ytrain,i)

.

Similarly, we define the test error as

(8) ϵ2test = E[(Ŷi − Ytest,i)
2]

It can be shown that

(9) ϵ2test = (E[Ŷi]− y)2︸ ︷︷ ︸
=bias

+ var(ŷ)︸ ︷︷ ︸
=variance

+σ2
ϵ

The bias results from the fact that our model will systematically under or over
estimate the y values. For example, if we try to fit an exponentially decaying curve
with a straight line, different data sets will give consistent result, but on average
they will overestimate the middle of the data and underestimate the ends.

The variance variation between our model predictions and the data between
different datasets from the same model. For example, if we interpolate every single-
point, then a different set of points will cause our curve to change in ways that
differ from the data.
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Roughly speaking, a biased model will give us consistent but incorrect results,
while a low bias high variance model will be correct on average, but our predictions
will vary a lot from data set to data set and therefore will not be reliable. A key
conceptual point to understand is that the variance arrises from a model being
too complex, while bias arrises from a model not being complex enough.

Figure 2. Bias an variance
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