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1. Model assumptions revisited

And this point you should understand
• The mathematical definition of a linear regression model, as well as the

assumptions that are being made.
• How to fit regression models in python.
• How to interpret the results, including R2, standard errors, confidence in-

tervals and p-values.
This is only half of data science (or as I like to call it, science). The other half
involves

• Building the “right" model to answer a given scientific question
• Integrating prior knowledge into the model and inference
• identifying deficiencies in our models
• and changing to them to answer the scientific questions we are interested

in

1.1. General assumptions in statistical inference. Whenever we build a model
and perform statistical inference, we are making assumptions about the the data.
We’ve discussed a few of the assumptions we make in linear regression models, but
in this section we are going to take a deeper dive into regression modeling assump-
tions. Some of them are explicit assumptions of the linear regression model, while
others are more general assumptions we make in statistical analysis which are
buried underneath the model itself, and often overlooked. We start by discussing
these assumptions.

Validity: We assume that data is actually relevant to your research objective.
For example, someones income does not necessarily tell you about someones total
assets (they have a lot of debt, or simply be terrible at managing their money). So
studying income can be misleading for certain research questions. This is often
an issue when we study response variables that are aggregate statistics, such as
metrics of performance. Do the aggregate statistics actually predict the results we
are interested in? It’s also an issue with subjective traits, like wellbeing, happiness.
We might be able to find what factors are associated with someone reporting they
are happy on a survey, but do these factors actually predict someone’s long term
happiness?

Representativeness: Whenever we fit a model on a finite data set and use it
to make predictions about samples outsite the data set (e.g. future elections). We
are assuming our sample is representative of the entire population (or at least
the subset of the population we are interested in making predictions about). For
example, if we fit a model using data from college basketball, will that same model
be able to make predictions about the NBA? Maybe. If we can make predictions
about elections in US, will we be able to predict the outcome of elections in the
UK? Probably not.
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1.2. Linear regression model assumptions. Below we will grow through our mod-
eling assumptions in the linear regression context. It’s important recognize that
all these assumptions are always false. The question we must ask is whether they
are adequate approximations for the questions we are interested in.

2. Normality of errors

We assume that the distribution of the errors is Normal. Why do we make this
assumption? Partly for convenience as it’s easy to work with Normal distributions,
but on a deeper level, normal distributions emerge when noise is due to the additive
contributions of many small sources of randomness.

Mathematical, this is due to the central limit theorem. Roughly speaking, the
Central limit theorem tells us that when noise is due to adding up many small
source of randomness, we get a Normal distribution.

2.1. Multiplicative randomness. Let’s first work with a simple example involving
one predictor: the effect of height on earnings.

Example 1. Problems with earnings model

Why is the assumptions of normality problematic for earnings? This is a situa-
tion where a “toy mode" can be very useful. A toy model for earnings is as follows.
This model is not meant to have anything to do with the actual distribution of
salaries, its only purpose is to illustrate a conceptual point that probably applies
to the real distribution of salaries.

Let’s imagine 1000 people of the same height enter the workforce at the same
time each with a starting salary of y0k. 20 years later there will of course be some
variation in their earnings, represented by ϵ in the model. Let’s think about what
exactly causes that and the kind of distribution it might lead to.

A person might get lucky and gets a promotion, or is hired into a very prestigious
position and so their salary will increase to say 2y0. Raises are generally some
percent of a person’s salary, so now if this person continues to be successful in
their career, their salary will increase by an amount proportional to 2y0. After 20
years, the randomness in everyone’s earning will not simply be the sum of many
small factors.

To be mathematically precise, if someones gets a promotion that increases their
salary by a factor ϕ1 after their first year on the job, their salary the next year will
be

(1) y1 = y0 × ϕ1

If they get a promotion after their second year that increase their salary by a factor
ϕ2, their salary will be

(2) y2 = y1 × ϕ2 = y0 × ϕ1 × ϕ2

If someones get’s 20 promotions over 20 years which increase their salary by
factors ϕ1, ϕ2, . . . percent, their earning after 10 years will be:

(3) y = y0 × ϕ1 × ϕ2 · · · × ϕ20

Now let’s simulate the salaries of 1000 people all get some sort of promotation or
demotion each year. We will assume there is some variation in their promotions
which we model by a Normal distribution:

(4) ϕi ∼ Normal(1.01, 0.1)

This says that, on average, someone’s salary goes up by 1%, but it could increase
or decrease by as much as ≈ 20%.

Example 2. Earnings toy model

This example illustrates how non-normality can arrises from multiplicative ef-
fects. Recall that logarithms have the effect of transforming products into sums,
thus:

(5) ln y = ln y0 +
∑
i

lnϕi

Intuitively, when we take the logarithm we are measuring our response variable in
powers of e, or whatever the base of our log is (it doesn’t matter).

https://colab.research.google.com/drive/1bBeb3k5xEjGInFtjhB7X8B0LXqkGI0Tn#scrollTo=YGx6p6IPsIqA&line=1&uniqifier=1
https://colab.research.google.com/drive/1bBeb3k5xEjGInFtjhB7X8B0LXqkGI0Tn#scrollTo=YGx6p6IPsIqA&line=1&uniqifier=1
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Figure 1. The effect of a log transform on the histogram for a very
skewed distribution

2.2. Working on a log scale. Now back to our regression model. It makes more
sense to model earnings on a log scale:
(6) lnY = aX + b+ ϵ

where X is height. What a mean in terms of conditional averages? a is the average
difference in log earnings between two people who differ in height by 1 inch. When
we think about differences in the log of a response variable, we should remember
that
(7) lnY1 − lnY2 = lnY1/Y2.

so differences in log earnings correspond to log ratios between earnings.
We can also see this by exponentiating both sides of the linear regression equa-

tions. This yields
(8) Y = eaXebeϵ

The conditional average value of y is
(9) E[Y |X] = eaXebE[eϵ]
That is, our model is saying that if a person is one inch taller than someone
else, they will make, on average, ea times as much money

If a is small (roughly between −0.4 and 0.4), then a useful approximation is
(10) ea ≈ 1 + a.

Thus, if a person is one inch taller than someone else, they make on average
about 100|a|% more (or less) money, assuming a is not too large

Example 3. Earnings

3. Independence of errors

In linear regression models, we generally assume the errors or noise values ϵi are
independent. This means that if one data point is very far from the regression line
(or very close), it does not effect the chance that the other data points are very far
(or very close) to the regression line. Statistically speaking, they are independent.
Two variables are independent if observing one of the variables doesn’t change the
distribution of the other variable.

This assumption often fails when our predictor variables represent either time
or space. The following example illustrates this.

Example 4. Linear regression on unemployment data

https://colab.research.google.com/drive/1bBeb3k5xEjGInFtjhB7X8B0LXqkGI0Tn?usp=sharing
https://colab.research.google.com/drive/1bBeb3k5xEjGInFtjhB7X8B0LXqkGI0Tn?usp=sharing
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Exercise 1: Simulating time series model for unemployment

4. Residual plots

The previous examples illustrate how the residuals can be used to evaluate the
linear regression model assumptions. Indeed, residual plots are central tool used
to access modeling assumptions; however, there are some subtle aspects to their
interpretation, particularly when working with multiple predictors. Let’s take a
mode systematic look at the use of residual plots.

The basic idea of residual plots is that by plotting the difference between the
observed y values and the prediction of the E[Y |X], or

(11) rj = Yj −
K∑
i

âiXi,j ,

we can identify any patterns that would suggest the assumption of the linear re-
gression model are violated. In the instance of a single-predictor, we can simply
plot rj as a function of the predictor X. If we notice that the residuals do not ap-
pear to follow a normal distribution, or that the variance and mean change, then
we should be skeptical.

When we have multiple predictors, what do we plot on the x axis? The answer is
to plot rj as a function of the predictors value of E[Y |X], or

∑K
i âiXi,j. The following

example illustrates why.

Example 5. Residual plots with multiple predictors

Figure 2. Correct and incorrect way to plot residuals against re-
sponse variable

4.1. Identifying interactions in residual plots. In regression models, we assume
that the response variable is, on average, a linear function of each of the predictors.
In some cases, when this assumptions is violated, we can create a linear model by
defining new predictors. For example, this is possible when there are interactions
between predictors. Nearly all relationships we are interested will be nonlinear

Residual plots are also useful to determining when there are so-called interac-
tions; that is, when the association between Xi and Y depends on another predic-
tor.

Example 6. Identifying an interaction

Exercise 2: Checking for interactions in test score data

https://colab.research.google.com/drive/1bBeb3k5xEjGInFtjhB7X8B0LXqkGI0Tn?usp=sharing
https://colab.research.google.com/drive/1bBeb3k5xEjGInFtjhB7X8B0LXqkGI0Tn#scrollTo=Wt-Irm_AeY17&line=1&uniqifier=1
https://colab.research.google.com/drive/1bBeb3k5xEjGInFtjhB7X8B0LXqkGI0Tn?usp=sharing
https://colab.research.google.com/drive/1bBeb3k5xEjGInFtjhB7X8B0LXqkGI0Tn?usp=sharing
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