MULTIPLE PREDICTORS

ETHAN LEVIEN

CONTENTS

1. Multiple predictor linear regression	1
2. Interpretation and estimation of the parameters	1
3. Collinearity and sloppy models	3
3.1. The sample distribution of coefficients	3
3.2. Changing variables.	4
4. Dealing with categorical data	4

1. Multiple predictor linear regression

The real power of regression comes when we work with models of the form

(1)
$$Y = b + \sum_{i=1}^{K} a_i X_i + \epsilon$$

(2)
$$\epsilon \sim \operatorname{Normal}(0, \sigma_{\epsilon})$$

where X_i is a set of K predictor variables. If we want to think about this in terms of conditional averages, then

(3)
$$Y|(X_1 = x_1, \dots, X_K = x_K) \sim \operatorname{Normal}\left(b + \sum_{i=1}^K a_i X_i, \sigma_\epsilon\right)$$

This is the simplest generalization of the single-predictor regression model to work with multiple predictors, although as we will see it is not the only generalization. We now want to answer all the questions we asked for the original regression model in the context of this model, such as:

- (1) What assumptions are we making and how do we interpret the parameters $a_i?$
- (2) What are estimators of the parameters from data?
- (3) How accurate is our model at predicting new Y values based on X values?

1.0.1. Multiple predictors in python. Let's start by seeing how to work with multiple predictors in python The first step is to get the predictor variables in the correct format for statsmodels. Statsmodels wants us to input a multidimensional arrray

-

(4)
$$X = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} \\ 1 & x_{2,1} & x_{2,2} \\ \vdots & \vdots & \vdots \\ 1 & x_{n,1} & x_{n,2} \end{bmatrix}$$

The *i*th column contains the predictors that go with our *i*th observation *y*. This will tell statsmodels to also include a constant term (the intercept) β_0 in our regression.

The following code will get our data in this format:

> X = sm.add_constant(np.transpose(np.array([x_hs,x_iq])))

Example 1. Our first regression with multiple predictors

2. Interpretation and estimation of the parameters

In order to interpret the parameters, it's easiest to work with just two predictors:

(5)
$$Y = b + a_1 X_1 + a_2 X_2 + \epsilon$$

Let start by just looking at the deterministic equation:

(6)
$$y = b + a_1 x_1 + a_2 x_2$$

This describes a flat surface in two dimensions as shown in Figure 2

Date: April 2022.

FIGURE 1. The function $y(x_1, x_2)$

If we make a slide through the surface in the x_1 direction and look it at from the side, we see a line with slope a_1 (and similarly for x_2). Now back to the regression model. We can understand a_1 is the slope of Y vs. X_1 for fixed (conditioned on) X_2 . The fact that it doesn't matter which value of X_2 we condition is an assumption of the model. Mathematically, we can write

(7)
$$a_1 = \mathbb{E}[Y|X_1 = (x+1), X_2] - \mathbb{E}[Y|X_1 = x, X_2].$$

It is important that we condition on BOTH variables?

You might guess the coefficient a_1 is also $cov(Y, X_1)/\sigma_{x_1}^2$. After all, if we look a slice of the 2D planer function $y(x_1, x_2)$ along the x_1 direction, we get the same slope for all x_2 . It stands to reason if we look at only the points in the x_1 -y plane our regression slope would be a_1 . This argument assumes that when we change x_1 , x_2 does not also change. This is best understood with an example

Example 2. Understanding the multiple predictors regression slopes

The important thing is that when we increase x_1 we are ALSO increasing x_2 .

FIGURE 2. When we increase x_1 by 1, x_2 changes by *b* (which is the slope between x_1 and x_2 here, not the intercept.)

MULTIPLE PREDICTORS

If the usual relationship in terms of the covariance doesn't hold, is there a more general relationship expression for a_1 in terms of conditional averages. The answer is, of course, yes! To get there, we need to us some linear algebra which is beyond the scope of these notes. If you are interested, it goes something like this:

$$\begin{array}{c} \textbf{(8)} \quad \left[\begin{array}{c} a_1 \\ a_2 \end{array}\right] = \left[\begin{array}{c} \sigma_{x_1}^2 & \operatorname{cov}(X_1, X_2) \\ \operatorname{cov}(X_1, X_2) & \sigma_{x_2}^2 \end{array}\right]^{-1} \left[\begin{array}{c} \operatorname{cov}(X_1, Y) \\ \operatorname{cov}(X_2, Y) \end{array}\right] \\ \textbf{(9)} \qquad = \frac{1}{\sigma_{x_2}^2 \sigma_{x_1}^2 - \operatorname{cov}(X_1, X_2)^2} \left[\begin{array}{c} \sigma_{x_2}^2 & -\operatorname{cov}(X_1, X_2) \\ -\operatorname{cov}(X_1, X_2) & \sigma_{x_1}^2 \end{array}\right] \left[\begin{array}{c} \operatorname{cov}(X_1, Y) \\ \operatorname{cov}(X_2, Y) \end{array}\right] \\ \end{array}$$

After using the formula for the inverse of 2×2 matrix, we obtain

(10)
$$a_1 = \frac{\operatorname{cov}(X_1, Y)\sigma_{x_2}^2 - \operatorname{cov}(X_2, Y)\operatorname{cov}(X_1, X_2)}{\sigma_{x_2}^2 \sigma_{x_1}^2 - \operatorname{cov}(X_1, X_2)^2}$$

(11)
$$= \frac{\operatorname{cov}(X_1, Y) - \operatorname{cov}(X_2, Y) \operatorname{cov}(X_1, X_2) / \sigma_{x_2}^2}{\sigma_{x_1}^2 - \operatorname{cov}(X_1, X_2)^2 / \sigma_{x_2}^2}$$

You don't need to worry about this formula, but it essentially tells us how a_1 can be estimated from data: We replace the covariances and variances with the corresponding sample averages. Notice that if all the variances are equal to one:

(12)
$$a_1 = \frac{1}{1 - \rho_{1,2}} (\rho_1 - \rho_{1,2} \rho_2)$$

where $\rho_{1,2}$ is the correlation coefficient between X_1 and X_2 . Notice that if X_1 and X_2 are uncorrelated ($\rho_{1,2} = 0$), we obtain the usual connection between the regression coefficient and the correlation coefficient between X_1 and X_2 .

Exercise 1: Test score data

Exercise 2: More on test scores

This can all be generalized to the situation where we have many predictors. The general formula for the regression coefficient would be:

(13)
$$a_i = \mathbb{E}[Y|X_1, \dots, X_{i-1}, X_i = x_i + 1, X_{i+1}, \dots, X_K] - \mathbb{E}[Y|X_1, \dots, X_{i-1}, X_i = x_i, X_{i+1}, \dots, X_K]$$

We get a more complex expression for the coefficients but the idea is the same.

3. Collinearity and sloppy models

3.1. **The sample distribution of coefficients.** Just as before, we want to understand what the sample distribution of the coefficients looks like. In the multiple predictor case, this becomes more interesting, as the following example illustrates.

Example 3. Understanding multivariate sample distribution

To better understand what is going on, imagine X_1 and X_2 are very highly correlated (if they are perfectly correlated we say they are **colinear**). We can then write

(14)
$$Y = a_1 X_1 + a_2 X_2 + \epsilon \approx a_1 X_1 + a_2 X_1 + \epsilon$$

$$\approx (a_1 + a_2)X_1 + \epsilon$$

There are many ways to select a_1 and a_2 so that the surface $a_1x_1 + a_2x_2$ is close to the lines, since a change in a_1 can be compensated by a change in a_2 . This means that **if we estimate** a_1 **and** a_2 **and then generated new data, it would be possible to get a VERY different value of** \hat{a}_1 **and** \hat{a}_2 , **so long as** $\hat{a}_1 + \hat{a}_2$ **is close to what we got before**. This is illustrated in Figure 3 and Figure 4. The following exercises explored in more depth what this means for the sample distribution.

Exercise 3: Understanding multivariate sample distribution

Exercise 4: Sample distributions and predictors

Exercise 5: Implications for predictions

FIGURE 3. (top) In the single-predictor case, the width of the sample distribution measures how confident we are of a particular slope. It will be narrow if a replicate of our data is likely to produce a very similar slope. These means we get a rough idea of the width of sample distribution by seeing much we can change our regression line and still obtain something that appears to pass through our data. (bottom) In the two predictor case, we have a regression plane and changing a_1 and a_2 will "wiggle" the plane by tilting it in the x_1 and x_2 directions (there is also the intercept which can shift the plane up and down, but I'm not illustrating that). If X_1 and X_2 are uncorrelated, it doesn't matter which way we wiggle it, the fit will be similar, but if X_1 and X_2 are strongly correlated, wiggling the plane in the direction perpendicular to the points has a much smaller effect that parallel to them.

3.2. **Changing variables.** At this point, you should understand that the sample distribution is related to correlations between x_1 and x_2 . Indeed, for a large enough sample, one can show that

(16)
$$\hat{a}_1 \sim \operatorname{Normal}\left(a_1, \sqrt{\frac{\sigma_\epsilon^2 \sigma_{x_1}^2}{\operatorname{cov}(X_1, X_2)^2 - \sigma_{x_1}^2 \sigma_{x_2}^2}}\right)$$

Here, we can see explicitly what happens when X_1 and X_2 become highly correlated – the standard deviation of the sample distribution blows up. When this happens, we will say the model is **sloppy**. How do we deal with this situation? One approach is to use different predictor variables, for example, if $X_1 \approx X_2$, we might simply work with $X_1 + X_2$ as our predictor.

4. Dealing with categorical data

One situation in which models with multiple predictors frequently arrises is when trying to predict a Y variable based on categorical predictors, such as race. In this case, we need to transform the categories into numerical values. For example, if there are two cataogies, we map our variable to 0 or 1. If we have 3 categories, we might first think to map them to 0, 1 and 2. This has a problem though: A chance from 1 to 2 should not necessarily correspond to a change from 0 to 1. **There is no ordering of the** x **values**. Thus, instead we introduce a new variable, which is 1 if our data point is in the third category and zero otherwise. Do you see what the problem would be if we have 3 X variables, one for each category?

In order to take a categorical variable and transform it into a set of indicator variables in python, we use

Example 4. Working with categorical data

> get_dummies

FIGURE 4. Different views of the data in the case when X_1 and X_2 are correlated. If we look at the data from the side, or along the $X_1 = X_2$ direction, then all our regression planes appear similar; however, when looked at from the "front" as shown in the right panel, we see that the places actually have very different slopes in the other direction.

Exercise 6: Understanding marginal regression coefficients

Exercise 7: Simpson's paradox