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1. Multiple predictor linear regression

The real power of regression comes when we work with models of the form

Y = b+

K∑
i=1

aiXi + ϵ(1)

ϵ ∼ Normal(0, σϵ)(2)
where Xi is a set of K predictor variables. If we want to think about this in terms
of conditional averages, then

(3) Y |(X1 = x1, . . . , XK = xK) ∼ Normal

(
b+

K∑
i=1

aiXi, σϵ

)
This is the simplest generalization of the single-predictor regression model to

work with multiple predictors, although as we will see it is not the only generaliza-
tion. We now want to answer all the questions we asked for the original regression
model in the context of this model, such as:

(1) What assumptions are we making and how do we interpret the parameters
ai?

(2) What are estimators of the parameters from data?
(3) How accurate is our model at predicting new Y values based on X values?

1.0.1. Multiple predictors in python. Let’s start by seeing how to work with multiple
predictors in python The first step is to get the predictor variables in the correct
format for statsmodels. Statsmodels wants us to input a multidimensional arrray

(4) X =


1 x1,1 x1,2

1 x2,1 x2,2

...
...

...
1 xn,1 xn,2


The ith column contains the predictors that go with our ith observation y. This

will tell statsmodels to also include a constant term (the intercept) β0 in our re-
gression.

The following code will get our data in this format:
> X = sm.add_constant(np.transpose(np.array([x_hs,x_iq])))

Example 1. Our first regression with multiple predictors

2. Interpretation and estimation of the parameters

In order to interpret the parameters, it’s easiest to work with just two predictors:
(5) Y = b+ a1X1 + a2X2 + ϵ.

Let start by just looking at the deterministic equation:
(6) y = b+ a1x1 + a2x2

This describes a flat surface in two dimensions as shown in Figure 2
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Figure 1. The function y(x1, x2)

If we make a slide through the surface in the x1 direction and look it at from the
side, we see a line with slope a1 (and similarly for x2). Now back to the regression
model. We can understand a1 is the slope of Y vs. X1 for fixed (conditioned on)
X2. The fact that it doesn’t matter which value of X2 we condition is an
assumption of the model. Mathematically, we can write

(7) a1 = E[Y |X1 = (x+ 1), X2]− E[Y |X1 = x,X2].

It is important that we condition on BOTH variables?
You might guess the coefficient a1 is also cov(Y,X1)/σ

2
x1

. After all, if we look a
slice of the 2D planer function y(x1, x2) along the x1 direction, we get the same
slope for all x2. It stands to reason if we look at only the points in the x1-y plane
our regression slope would be a1. This argument assumes that when we change
x1, x2 does not also change. This is best understood with an example

Example 2. Understanding the multiple predictors regression slopes

The important thing is that when we increase x1 we are ALSO increasing x2.

Figure 2. When we increase x1 by 1, x2 changes by b (which is the
slope between x1 and x2 here, not the intercept.)
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If the usual relationship in terms of the covariance doesn’t hold, is there a more
general relationship expression for a1 in terms of conditional averages. The answer
is, of course, yes! To get there, we need to us some linear algebra which is beyond
the scope of these notes. If you are interested, it goes something like this:[

a1
a2

]
=

[
σ2
x1

cov(X1, X2)
cov(X1, X2) σ2

x2

]−1 [
cov(X1, Y )
cov(X2, Y )

]
(8)

=
1

σ2
x2
σ2
x1

− cov(X1, X2)2

[
σ2
x2

−cov(X1, X2)
−cov(X1, X2) σ2

x1

] [
cov(X1, Y )
cov(X2, Y )

]
(9)

After using the formula for the inverse of 2× 2 matrix, we obtain

a1 =
cov(X1, Y )σ2

x2
− cov(X2, Y )cov(X1, X2)

σ2
x2
σ2
x1

− cov(X1, X2)2
(10)

=
cov(X1, Y )− cov(X2, Y )cov(X1, X2)/σ

2
x2

σ2
x1

− cov(X1, X2)2/σ2
x2

(11)

You don’t need to worry about this formula, but it essentially tells us how a1 can
be estimated from data: We replace the covariances and variances with the corre-
sponding sample averages. Notice that if all the variances are equal to one:

(12) a1 =
1

1− ρ1,2
(ρ1 − ρ1,2ρ2)

where ρ1,2 is the correlation coefficient between X1 and X2. Notice that if X1 and X2

are uncorrelated (ρ1,2 = 0), we obtain the usual connection between the regression
coefficient and the correlation coefficient between X1 and X2.

Exercise 1: Test score data

Exercise 2: More on test scores

This can all be generalized to the situation where we have many predictors. The
general formula for the regression coefficient would be:

ai = E[Y |X1, . . . , Xi−1, Xi = xi + 1, Xi+1, . . . , XK ]

− E[Y |X1, . . . , Xi−1, Xi = xi, Xi+1, . . . , XK ]
(13)

We get a more complex expression for the coefficients but the idea is the same.

3. Collinearity and sloppy models

3.1. The sample distribution of coefficients. Just as before, we want to under-
stand what the sample distribution of the coefficients looks like. In the multiple
predictor case, this becomes more interesting, as the following example illustrates.

Example 3. Understanding multivariate sample distribution

To better understand what is going on, imagine X1 and X2 are very highly cor-
related (if they are perfectly correlated we say they are colinear). We can then
write

Y = a1X1 + a2X2 + ϵ ≈ a1X1 + a2X1 + ϵ(14)
≈ (a1 + a2)X1 + ϵ(15)

There are many ways to select a1 and a2 so that the surface a1x1 + a2x2 is close to
the lines, since a change in a1 can be compensated by a change in a2. This means
that if we estimate a1 and a2 and then generated new data, it would be possible
to get a VERY different value of â1 and â2, so long as â1 + â2 is close to what
we got before. This is illustrated in Figure 3 and Figure 4. The following exercises
explored in more depth what this means for the sample distribution.

Exercise 3: Understanding multivariate sample distribution

Exercise 4: Sample distributions and predictors

Exercise 5: Implications for predictions

https://colab.research.google.com/drive/1oIRgP_7-c5DGV1D2iz5nj406mZfJxUIG#scrollTo=wbeO1TS8os5J&line=15&uniqifier=1
https://colab.research.google.com/drive/1oIRgP_7-c5DGV1D2iz5nj406mZfJxUIG#scrollTo=wbeO1TS8os5J&line=15&uniqifier=1
https://colab.research.google.com/drive/1oIRgP_7-c5DGV1D2iz5nj406mZfJxUIG#scrollTo=h_vbLZqWPNzD&line=1&uniqifier=1
https://colab.research.google.com/drive/1oIRgP_7-c5DGV1D2iz5nj406mZfJxUIG#scrollTo=h_vbLZqWPNzD&line=1&uniqifier=1
https://colab.research.google.com/drive/1oIRgP_7-c5DGV1D2iz5nj406mZfJxUIG#scrollTo=SugKDnavWgtU&line=3&uniqifier=1
https://colab.research.google.com/drive/1oIRgP_7-c5DGV1D2iz5nj406mZfJxUIG#scrollTo=SugKDnavWgtU&line=3&uniqifier=1


4 ETHAN LEVIEN

Figure 3. (top) In the single-predictor case, the width of the sample
distribution measures how confident we are of a particular slope.
It will be narrow if a replicate of our data is likely to produce a very
similar slope. These means we get a rough idea of the width of
sample distribution by seeing much we can change our regression
line and still obtain something that appears to pass through our
data. (bottom) In the two predictor case, we have a regression plane
and changing a1 and a2 will “wiggle" the plane by tilting it in the
x1 and x2 directions (there is also the intercept which can shift the
plane up and down, but I’m not illustrating that). If X1 and X2 are
uncorrelated, it doesn’t matter which way we wiggle it, the fit will be
similar, but if X1 and X2 are strongly correlated, wiggling the plane
in the direction perpendicular to the points has a much smaller
effect that parallel to them.

3.2. Changing variables. At this point, you should understand that the sample
distribution is related to correlations between x1 and x2. Indeed, for a large enough
sample, one can show that

(16) â1 ∼ Normal

(
a1,

√
σ2
ϵσ

2
x1

cov(X1, X2)2 − σ2
x1
σ2
x2

)
Here, we can see explicitly what happens when X1 and X2 become highly correlated
– the standard deviation of the sample distribution blows up. When this happens,
we will say the model is sloppy. How do we deal with this situation? One approach
is to use different predictor variables, for example, if X1 ≈ X2, we might simply work
with X1 +X2 as our predictor.

4. Dealing with categorical data

One situation in which models with multiple predictors frequently arrises is
when trying to predict a Y variable based on categorical predictors, such as race. In
this case, we need to transform the categories into numerical values. For example,
if there are two cataogies, we map our variable to 0 or 1. If we have 3 categories, we
might first think to map them to 0, 1 and 2. This has a problem though: A chance
from 1 to 2 should not necessarily correspond to a change from 0 to 1. There is no
ordering of the x values. Thus, instead we introduce a new variable, which is 1
if our data point is in the third category and zero otherwise. Do you see what the
problem would be if we have 3 X variables, one for each category?

In order to take a categorical variable and transform it into a set of indicator
variables in python, we use
> get_dummies

Example 4. Working with categorical data
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Figure 4. Different views of the data in the case when X1 and X2 are
correlated. If we look at the data from the side, or along the X1 = X2

direction, then all our regression planes appear similar; however,
when looked at from the “front" as shown in the right panel, we see
that the places actually have very different slopes in the other di-
rection.

Exercise 6: Understanding marginal regression coefficients

Exercise 7: Simpson’s paradox
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