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1. Regression to the mean

Learning a little bit about the origin of the term regression can help us better
understand regression models. Consider the regression model of daughter height
(Y ) conditioned on mother height (X):

(1) Y ∼ aX + b+ ϵ, ϵ ∼ Normal(0, σϵ).

Over only one or two generations, we really don’t expect the distribution of heights
to change very much. Mathematically, this means Y and X should really have the
same distribution. We call this the steady-state assumptions, because it amounts
to the assumption that the distribution of heights is in a steady-state (which is a
good approximation). Naively, we night expect that if the distribution of X and Y
are the same, a = 1. This is because the steady-state assumption seems to suggest
that the regression line should preserve the distribution, and therefore the average
value Y |X should be the same as the average of X. This turns out to be false!

To make sense of the fact that a < 1, let’s do some math. We will suppose

(2) X ∼ Normal(µ, σ)

The steady-state assumptions tells us:

(3) Y ∼ Normal(µ, σ).

On the other hand, we have a formula for the standard deviation of Y (see week 2
notes):

(4) Y ∼ Normal(aµ+ b,
√
|a|2σ2 + σ2

ϵ ).

The assumption that both distributions are equal implies

aµ+ b = µ(5)

|a|2σ2 + σ2
ϵ = σ2(6)

Solving these equations, we find that

(7) b = µ(1− a)

(8) σ =
σϵ√
1− a2

.

For this equation to make sense, |a| < 1, otherwise the standard deviation of the
steady-state distribution explodes! The only exception is if σϵ = 0, since then y is
a deterministic function of x.

What is the intuition behind all this? Let’s imagine a = 1. Then abnormally
tall mothers would birth to daughters that were on average just as tall (and the
reverse for short mothers). This means that among all daughters, the spread of
heights will be larger! The same thing will happen to the granddaughters and over
time the standard deviation of the distribution of heights will continue to grow. We
need |a| < 1 to balance out the effects of ϵ, which tends to spread things out. As
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a result, the average height conditioned on mother height is a combination of the
mother’s height and mean height among all mothers, µ:

(9) E[Y |X = x] = ay + (1− a).

Example 1. Simulation of an autoregressive process

An important lesson from the autoregressive example is that small differences
is parameters can lead to HUGE differences in the results! It’s crucial to
understand what parameters.

Exercise 1: Working with autoregressive models

2. Some basic model evaluation

Often we are interested in fitting data (i.e. inferring the parameters) to a linear
regression model because we want to make predictions. How do we access how
accurately we can make predictions? In order to address this questions it is very
important we recognize there are different types of predictions we might want to
make. For example, in the context of predicting the outcome of an election, we not
interested so much in the distribution of outcomes, rather (since there is only one
election). If we are designing a drug, it doesn’t matter if there is an effect on the
average if there is a very wide distribution of outcomes. We refer to predictions of
SPECIFIC Y values as point predictions.

On the other hand, if we are interested in a scientific question, such as the her-
itability of human height, it is not so important whether we can predict individual
heights, rather we are interested in understanding what the entire distributions of
heights is. For example, we might want to know the chance that a person is greater
than 6.5 feet. We will refer to these types of predictions – that is, predictions about
the statistical behavior of a variable – as probabilistic predictions.

2.1. Coefficient of determination. Let’s think about how we would evaluate our
model’s ability to make point predictions. Let’s say we have fit a linear regression
model and obtained â, b̂ and σ̂ϵ. If we want to predict the value of Y given X = x,
our best guess is

(10) ŷ = âx+ b̂

It is important to recognize that ŷ depends on the data, just like â and b̂. If we
know the actual value of Y |(X = x) = y(x), then we could look at the difference
between the prediction and the actual value:

(11) r = ŷ − y.

If course, we don’t have y for every x only for the points in our data. Thus, a natural
assessment of our models predictive power is to look at ri for each data point:

(12) Sr =

n∑
i=1

(ŷi − yi)
2.

S itself is not that useful though: it could be very large, and yet if it is much smaller
than the overall variation in Y , we can still make accurate predictions.

(13) Sy =

n∑
i=1

(yi − µ̂y)
2.

We compare there two quantities we obtain the coefficient of determination.

(14) R2 = 1− Sr/Sy.

This is what statsmodels returns. We can think of R2 as a measure of how much
variation in Y is explained by X.

The coefficient of determination is actually related to a familiar quantity, the
covariance. To see why, notice that if X follows a normal distribution, can rewrite
it as

R2 ≈ 1− σ2
ϵ

σ2
y

=
σ2
y − σ2

ϵ

σ2
y

(15)

=
a2σ2

x + σ2
ϵ − σ2

ϵ

σ2
y

=
a2σ2

x

σ2
y

=

(
cov(X,Y )

σyσx

)2

(16)

We refer to ρ = cov(X,Y )/(σxσy) as the correlation coefficient, and we have shown

(17) R2 = ρ2.
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To understand why ρ is meaningful, notice that if the spread of X is very large
relative to the spread in Y , a small value of a corresponds to a larger association
between X and Y if we measure things in standard deviations.

Example 2. Generating simulated data with different values of R2

We can better understand ρ in terms of the standardized variables. Let assume
that the X values in our regression model follow a Normal distribution and define
the standardized variables

(18) Zy =
Y − µy

σy
, Zx =

X − µx

σx

Here µ and σ are the marginal mean and standard deviation of the variable in the
subscript. As you will show in the exercise below, ρ is the slope of the regression
line of Zy vs. Zx. This helps us understand the meaning of ρ: it is there regression
line we get if we translate our data to the origin and then rescale the axis to,
roughly speaking, contain the bulk of our point cloud. Notice that |ρ| < 1 – why?
This is related to regression to the mean: Both Zx and Zy have the same standard
deviation.

Exercise 2: Some calculations involving ρ

Exercise 3: Interpreting R2 in the context of applications

3. Visualizing uncertainty in regression models

Just like any parameters, there is some uncertainty in our estimates of parame-
ters in a regression model. It is useful to visualize this when we plot the regression
line, as is shown here.

4. Making decision with regression models

In statistics, we might infer parameters not because we are interested in specific
values, but rather because we would like to use them to make a decision. For
example, whether a candidate drug is worth moving to the next step in clinical
trials. This problem is often framed in terms of hypothesis testing, in which we
assign a probability to a particular hypothesis or its converse. The basic procedure
of hypothesis testing is as follows:

(1) Compute something called a test statistic, T̂ , which like any estimator is
simply some function of the data.

(2) Ask: how likely would we be to obtain a value AT LEAST at large at T̂ IF
our hypothesis was false. The result is the p-value.

Let’s return the to the example of a clinical trial described in the previous weeks
notes. For simplicity we will assume that 1/2 there are N people in EACH group.
Then

µ̂C ∼ Normal(µC , σ/
√
N)(19)

µ̂T ∼ Normal(µT , σ/
√
N)(20)

thus

(21) ∆µ̂ ∼ Normal(∆µ,
√
2σ/N).

In this case, our null hypothesis will be that ∆µ = 0; that is, there is no effect of
the drug. As our test statistic, we measure how far ∆µ is from zero in standard
deviations:

(22) T̂ =
∆µ̂

se(∆µ̂)

Now, let ∆µ0 be the random variable representing the effect under the null hypoth-
esis. If we estimated ∆µ, we get the sample distribution

(23) ∆µ̂0 ∼ Normal(0,
√
2σ/N).

At this point we can answer the question posed in step 2. That is, we can answer
the question: If the null hypothesis was true, how likely would we be to observe a
value of T̂ larger than the one we did. This defines the p-value:

(24) pv = P (T̂0 > |T̂ ||T̂ )

where T̂0 is the test statistic corresponding to ∆µ̂0. Note that the probability in
the definition of pv is taken over the distribution of ∆µ̂0, not T̂ . In this way,
pv, like T̂ can be thought of as a random variable that depends on the data.
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If the p-value is very small, then it is highly unlikely we would have observed
what we did when the null hypothesis was true. In this case, we can REJECT
the null hypothesis as false. Usually some threshold is set for this, and if the pv
is below that threshold we say our result in statistically significant. On the other
hand,if pv not small, it does not necessarily mean the null hypothesis is true.

Example 3. p-values

A result is said to be statistically significant if pv < 0.05. Visually, we can see
that ∆µ is statistically significant exactly if 0 is not contained in the confidence
interval!

4.1. Problems with p-values, hypothesis testing and statistical significance.
Despite the widespread use of p-values, classical hypothesis testing and statistical
significance, these concepts have some problems. This does not mean they are
not useful, rather it is important to understand how they might be applied in
appropriately in practice.

First, typically the null hypothesis is never true, that is it is never the case that
two subpopulations are exactly equal – that is, that there is no effect. If we have
enough data, we can almost always rule out the null hypothesis.

Exercise 4: Behavior of p-values in N and effect size.

A major issue in who statistical significance is used in practice, is that is can
create a selection bias in the published literature, where effects sizes are almost
always over estimates.

Exercise 5: Bias in the literature

Finally, a philosophical problem with statistical significance is that the differ-
ence between statistically significant.

Exercise 6: Problems with statistical significance
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