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1. Estimators

The basic question of statistical inference can be framed as follow: We have a
statistical model for a variable Y , e.g.

(1) Y ∼ Normal(µ, σ),

but we don’t know the parameters (in this case µ and σ). Why do care about the
parameters? We need knowledge of these in order to make predictions.

Now imagine we have some samples of Y (either from simulations or data),
Y1, Y2, . . . , YN . What are our best estimates of these parameters, and how accu-
rate are they? We’ve already tackled the first part of this problem for a number
of distributions. The solution relies on two key observations:

(1) Both µ and σ can be represented as means over the distribution of Y . For
example µ = E[Y ].

(2) If we have enough samples the sample average should be close to the actual
average. That is, 1/N

∑N
i=1 Yi ≈ E[Y ]. The central limit theorem tells us how

accurate this estimate is.
To make this procedure more precise and generalizable, let’s introduce some

definition and notation. We will let θ̂ denote an estimator of a parameter θ from a
sample if θ̂ is some function of our sample which is meant to approximate θ. For
example

(2) µ̂ =
1

N

N∑
i=1

Yi

is an estimator of µ in the Normal model. Remember: the estimator is a property
of the data. That is, µ̂ depends on the specific data we collect or simulation
we run. However, in classical statistics, it is meant to approximate something, µ
which is a property of our statistical model. µ does not depend on the data.

Since µ̂ depends on the data, different replications of our sample will generate
different values of µ̂. We can therefore think of µ̂ as a random variable. We call the
distribution of µ̂ over many replications of our data the sample distribution. This
is different than the distribution of Y , rather it is the distribution of Y1, Y2, . . . , YN .
For example, Y follows the Normal distribution given above, the sample distribu-
tion of µ̂ is

(3) µ̂ ∼ Normal(µ, σ/
√
N)

1.1. Standard errors. A natural way to quantify the uncertainty in our estimate is
the standard deviation of the θ̂ under the sample distribution. We call the resulting
quantity the standard error, which is our estimate of the standard deviation of
the sample distribution For the Normal model,

(4) se(µ̂) =
σ̂√
N

.
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This tells us how much our estimate will vary between different experiments (or
surveys/simulations). The 95% confidence interval, or 95%CI is the interval

(5) [θ̂ − 1.96se(θ̂), θ̂ + 1.96se(θ̂)]

In classical statistics, the interpretation of CI is subtle: it is not saying there is
95% chance or parameter will be in this interval. To understand why, note that the
parameter has a 95% chance to be in the interval
(6) [θ − 1.96std(θ), θ + 1.96std(θ)]

The standard errors and confidence intervals can help us decide how much data
we need to collect.

Example 1. Using standard errors to design an experiment

There is an alternative way to think about the CI: as a measure of our belief
in the parameter value. This interpretation is more natural for me, and we will
discuss how to formalize it in the context of Bayesian statistics.

Exercise 1: Standard errors for binomial model

1.2. Bias and consistency. There must be some properties we would like the es-
timator to have. At a minimum, it should be in some way informed by the data.
We express this with the assumptions that: The more data we have (e.g. the larger
N ) the closer we expect θ̂ to be to the true value. What do we mean by "closer"
when we are talking about random things. This turns out to be technical, but for
our purposes we will say θ̂ is consistent if

(7) E[µ̂] → µ and se(θ̂) → 0 as N → ∞.

To better understand the notation of consistence, let’s consider two rather silly
ways to estimate q in a Bernoulli distribution. Let q̂1 and q̂2 be two other estimators
of q defined by

q̂1 =
Y

N
+

1

N
(8)

q̂2 =
y1 + y2

2
(9)

Example 2. Understanding consistency

This example demonstrates that consistency is not the only property we look for
in an estimator, since q̂1 seems inferior to q̂ = Y/N . To this end, we say that an
estimator θ̂ is unbiased for some N (not just very large N ), the average over the
sample distribution is equal to the actual value under the model distribution; that
is,
(10) E[θ̂] = θ.

Exercise 2: Understanding bias

2. Maximum Likelihood

Sometimes it is quite clear what the estimator for a parameter should be, for
example, this is the case for q in the Bernoulli distribution. However, we will find
this is not always the case, so it is useful to have a more systematic way of
finding estimators.

Recall that the probability distribution for the binomial distribution is

(11) p(Y ) =

(
n

Y

)
qY (1− q)n−Y

In statistics, we sometimes call this the likelihood. More generally, the likelihood
is defined as the probability we say a data set as a function of the parameters.

Equation (11) tells us how likely it is to observe k YES among n people surveyed.
Then, it seems reasonable that this number should not be very small, since that
would mean our survey results are an anomaly. More generally, the larger P(Y |q) is
the more likelihood our results are. This suggests one a way to estimate determine
q: We can take as our estimate q̂ the value which makes P(Y |q) largest. In other
words, we are finding the value of q which makes the data the most likely, and we
will call this the maximum likelihood estimate.

You can do this using calculus (if you know how, I suggest you give it a try) to
determine that the value of q which makes (11) largest is

(12) q̂MLE =
Y

n

https://colab.research.google.com/drive/1QarJhwPmSqCTQ-HwU_lXCUX6uvdhLdrM#scrollTo=jmB0Mvksc6B_&line=1&uniqifier=1
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For a Normal distribution with mean and variance µ and σ, the MLE estimators
are the usual sample mean and standard deviation which we have already been
exposed to.

3. Estimators for parameters in a regression model

Consider the example of a clinical trial conducted as follows. Suppose N people
participate in the trial, and are randomly assigned to the the control group (C) and
treatment group (T) with probability 1/2. People in T are given a drug whose effects
is measure by a percent. We can model the distribution of blood pressure before
and after treatment as

(13) YC ∼ Normal(µC , σ)

and

(14) YT ∼ Normal(µT , σ).

Our model for an individuals response can be framed as a regression model

(15) Y = (µT − µC)X + µC + ϵ

where X = 1 if someone is in the treatment group and

(16) ϵ ∼ Normal(0, σϵ).

How would we estimate µT , µC and σ from a sample? Assuming we know the group
each patient has been assigned to, we observe that

(17) E[Y |X = 1] = µT ,
√

var(Y |X = 1) = σϵ.

This means we can estimate these from sample averages of Y and X (and similar
for X = 0). You might be tempted to say that the variance of Y is also σϵ – but this
is false! Why? (think back to the previous note when we looked at the marginal
distribution of Y )

This means the sample distribution of the mean of the treatment group is

(18) µ̂T ∼ Normal(µT , σ/
√
N)

If ∆µ = µT − µC , then as estimator ∆µ is

(19) ∆µ̂ = µ̂T − µ̂C

which is really the slope of the regression line. The sample distribution of ∆µ̂ is
also Normal:

(20) ∆µ̂ ∼ Normal(∆µ, σϵ/
√
N)

3.1. Covariance and correlations coefficient. Now let’s consider the general re-
gression model

(21) Y = aX + b+ ϵ

where X may be a continuous variable. How would we estimate a?
To understand how this can be done, we start by defining the covariance:

(22) cov(X,Y ) = E[XY ]− E[X]E[Y ]

What is cov(X,X)?

(23) cov(X,X) = E[XX]− E[X]E[X] = E
[
X2 − E[X]2

]
= var(X).

If X and Y are independent, the covariance will be zero, it is possible for the co-
variance to be zero without the variables being independent.

Just like standard deviation and mean, estimates of covariance are obtained by
replacing E with the sample average: That is, if we have samples (x1, y1), (x2, y2), . . . ,

(24) E[XY ] ≈ 1

N

∑
i

xiyi

In python, you can compute the covariance
> np.cov(x,y)[0,1]

The reason for the [0, 1] is that the covariance function in numpy actually computes
a 2D array (a Matrix), where the off diagonal entries are the covariance.

Example 3. Covariance vs. independence

https://colab.research.google.com/drive/1QarJhwPmSqCTQ-HwU_lXCUX6uvdhLdrM#scrollTo=uQHmnUY9Yrq-
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3.2. Linear regression and least squares. For the linear regression model, we
can show that
(25) cov(X,Y ) = aσ2

x

Since cov(X,Y ) and σx are both things that can be computed from a sample, this
suggests an estimator for the slope variable

(26) â =
1

N−2

∑
i(yi − µ̂y)(xi − µ̂x)

σ̂2
x

The N −2 comes from the fact that we need at least two points to fit our regression
model. We can rewrite this as

(27) â =

∑
i(yi − µ̂y)(xi − µ̂x)∑

i(xi − µ̂x)2
=

∑
i

[
(yi − µ̂y)

(xi − µ̂x)

]2
(xi − µ̂x)∑
i(xi − µ̂x)2

This is weighted average of the rise/run between different points and the mean.
Notice that if there are only two values of x, it reduces to the formula in the previous
section. We can also show that
(28) b̂ = µ̂y − âµ̂x

â and b̂ are also called the least squares estimator, because it happens to be the
values of a and b which minimize the squared distance to the estimated regression
line.

Since the samples are Normally distributed around the line with variance σ, we
can estimate σ as the sample variance of the difference between our data and the
line b̂ + xâ. However, since we are replacing the actual values of a and b with the
estimations, we need to account for this in our estimation of the uncertainty and
divide by N − 2 instead of N .

You never need to work with these formulas directly, as there is a Python package
which does the computations for us. The code for fitting a linear regression model
is
> X = sm.add_constant(x)
> model = sm.OLS(y,X)
> results = model.fit()
> print(results.summary())
The following example illustrates the use of this

Example 4. Working with stats models

Exercise 3: More working with stats models

https://colab.research.google.com/drive/1QarJhwPmSqCTQ-HwU_lXCUX6uvdhLdrM#scrollTo=CruopEX0VYZe
https://colab.research.google.com/drive/1QarJhwPmSqCTQ-HwU_lXCUX6uvdhLdrM#scrollTo=WKJ4kyoIVvhd
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