
BASIC STATISTICAL MODELS
ETHAN LEVIEN

Contents

1. Binomial Distribution 1
2. Uniform distribution and probability density (optional) 2
2.1. Joint density and conditional density 2
2.2. Cumulative density function 2
3. Normal distribution and the central limit theorem 3
4. Transformations of random variables 4
4.1. Standardizing 4
5. Linear regression model 4
5.1. Working with regression 5
5.2. Interpretation of regression parameters 5

1. Binomial Distribution

A situation that often arrises is that we take many, say N , independent samples
from a Bernoulli distribution. Now let Y be the number of 1s. Symbolically,

(1) Y =

N∑
i=1

yi, yi ∼ Bernoulli(q).

Then Y follows binomial distribution:

(2) Y ∼ Binomial(N, q)

The binomial distribution has two parameters, N and p. Now let’s think about the
probability distribution. The chance to find any particular configuration of k ones
is qk(1− q)N−k because they are independent. For example

P (y1 = 1, y2 = 0, y3 = 1) = P (y1 = 1)P (y2 = 0)P (y3 = 1)(3)

= q(1− q)q = q2(1− q).(4)

However, there are many configurations with k ones, in-fact there are

(5)
(
N

k

)
=

N !

k!(N − k)!
,

and therefore

(6) P (Y = k) =

(
N

k

)
qk(1− q)N−k.

The binomial distribution has a mean and variance

(7) E[Y ] = qN var(Y ) = Nq(1− q).

These formulas come from the fact that for sums of independent variables, the
variance and expectation sum.

An important feature of the Bernoulli random variables is that the mean grows
much faster in N than the standard deviation. This means that when N is very
large, the deviations from the average will become very small relative to the mean.
An important measure of variation relative to the mean is the coefficient of varia-
tion

(8) CV =

√
var(Y )

E[Y ]
.

Binomial samples can be generated in numpy with
> y = np.random.binomial(n,p,n_samples)
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Often we are interested not in Y , but the fraction ϕ = Y/N . For example, we
might be interested in the vote share in an election. You should be able to see that
E[ϕ] = q. What about the variance?

(9) var(ϕ) = var(Y/N) =
1

N2
var(Y ) =

q(1− q)

N

Notice that this will tend towards zero as N → ∞. Meanwhile, E[ϕ] has no depen-
dence on N . This is a very important property, as it allows us to determine q by
approximating E[ϕ] with the sample mean.

Example 1. Coefficient of variation

Exercise 1: Generating binomial samples

Exercise 2: Binomial election modeling

You should recognize that the assumption of independence is very important
here. The following example illustrates an instance where this may break down
for an election model. It is a bit contrived, but contrived examples, which we
sometimes refer to as toy models, can be very helpful when it comes to building
our intuition.

Exercise 3: More election modeling

2. Uniform distribution and probability density (optional)

A uniform random variable, denoted

(10) Y ∼ Uniform(a, b)

has an equal chance of taking any number in the interval [a, b] (we assume a < b).
Let L = b−a. This is distinct from other distributions we have encountered in that it
is a continuous distribution, rather than discrete. For the uniform distribution,

(11) P (y1 ≤ Y ≤ y2) =
y2 − y1

L

for a < y1 < y2 < b. That is, the chance for Y to fall in any interval is simply the
length of that interval. This insures that that the probability of Y being somewhere
in [a, b] is one: P (a ≤ Y ≤ b) = 1. Note that as y2 → y1, P (y1 ≤ Y ≤ y2) →
0. This tells us that the chance for Y to take any specific value is 0. Indeed,
there are simply two many number (uncountably many) in any interval to assign
positive probability to each. For continuous variables, it is sometimes useful to
work with the density, f(y) (we will use lower case letters for density and uppercase
for probability distributions). f(y) is the the probability per unit Y , meaning that
if we look in a small interval

(12) f(y)dy = P (y ≤ Y ≤ y + dy) =
dy

L
.

Thus, for uniform distribution the density is 1/L if y ∈ [a, b] and 0 otherwise.

2.1. Joint density and conditional density. Conditioning works for probability
density just as it does for probability distributions.

Example 2. Conditioning with continuous variables

2.2. Cumulative density function. Sometimes it is useful to characterize a con-
tinuous distribution not by the density, but by the cumulative distribution func-
tion (CDF), defined as

(13) F (y) = P (Y < y).

What is the CDF of the uniform distribution? The median is the value ym for which
F (ym) = 1/2. What is the median of a Uniform distribution?

To better understand density and CDF, imagine a student says they will arrive
at my office between noon and 3. Let Y represent the time a student arrives, which
we will model as a Uniform random variable. Then the density is f(y) = 1/3 which
has units 1/hours. We can think of f as the rate at which the CDF increases –
that is, it is the velocity of probability.

https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=oaFLfi0JI4in&line=1&uniqifier=1
https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=vAmv5zV7gfE0
https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=8cRVZNYtLOum
https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=cwE2yj2nqdYF&line=1&uniqifier=1
https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=4X_DE6Ny_mcE


BASICSTATISTICAL MODELS 3

3. Normal distribution and the central limit theorem

In the previous example, we say that if we take the average of many Bernoulli
random variables, we get a histogram that looks a lot like a “bell curve" with a
standard deviation was proportional to 1/

√
n.It turns out this is true when we add

up any sequence of independent and independent distributed random variables
which are not too pathological (actually it is also true for many sequences of ran-
dom variables which are not independent).

It is useful to define a special random variable which captures the statistical
behavior of random sums. We call this a Normal random distribution

(14) Y ∼ Normal(µ, σ).

We can generate Normal random variables in python with
> np.random.normal(0,1)

The Normal distribution is defined by the Gaussian

(15) f(y) =
1√
2πσ

e−
−(y−µ)2

2σ .

This is the classic bell curve shown in Figure 1. The probability distribution for
the Normal distribution is defined by the area under this curve. As I discuss in the
previous section can think of f as the probability per unit of the random variable,
e.g. probability/feet.

Figure 1. Probabilities in the Normal distribution

We use the curve above to calculate probabilities of events in the Normal distri-
bution. For example

(16) Y ∼ Normal(5, 2)

what is (approximately) P (Y > 7)? Note that 5 + 2 = 7, so this is asking how likely
it is that a Normal variable is greater than 1 standard deviation above the mean.
This about 13.5 + 2 = 15.5%

The central limit theorem tell us that when yi are independent and have a
finite mean and variance µy and σy and

(17) Ŷ =
1

N

N∑
i=1

yi,

then the distribution of Ŷ should be close to that of

(18) Y ∼ Normal(µy, σy/
√
N).

Example 3. Comparing histograms

Example 4. Working with Normal random variables

Exercise 4: Hemoglobin levels

https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=qDKKEAeJXm87&line=1&uniqifier=1
https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=x23tWXiaxT7B&line=1&uniqifier=1
https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=wq-MSEh7YARC&line=1&uniqifier=1
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4. Transformations of random variables

Now consider

(19) X ∼ Normal(µx, σx)

and let

(20) Y = aX + b

We are just multiplying and shifting everything. Think about what this does to
the histogram (and try it in Python). Hopefully you can convince yourself that Y
should also be Normal, but what are the mean and variance? Taking the average
of both sides,

(21) E[Y ] = aµ+ b

and

(22) var(Y ) = var(aX) + var(b)

Form the formula for variance, we know var(aX) = a2var(X). Also, var(b) = 0 So

(23) Y ∼ Normal(aµx + b, |a|σx).

4.1. Standardizing. We can transform any random variable into a so-called stan-
dard normal

(24) Z ∼ Normal(0, 1).

For defined above,

(25) Z =
X − µx

σx

Then a = 1/σx and b = −µx/σx. Plugging into Equation (23) yields a standard
Normal. Transforming X to a standard Normal is equivalent to measuring X
in units of standard deviations. For example, if we make a histogram of X, all
this transformation does is change the X axis to units of standard deviations from
the mean.

5. Linear regression model

We now introduce the concept of regression modeling. A very broad class of mod-
els in statistics for the relationship between two variables X and Y is a regression
model:

(26) Y = f(X) + ϵ

where f is a deterministic function; that is, if we evaluate f at a particular number,
we get something that is not random. The term ϵ represents some source of noise
independent of X, and is typically modeled with a Normal distribution

(27) ϵ ∼ Normal(0, σϵ).

In other words, it represents things other than X which may influence Y . Regard-
less of how X is distributed, for any given values X = x, Y must have a Normal
distribution:

(28) Y |(X = x) ∼ Normal(f(x), σϵ).

Of particular interest (due to its simplicity) is the case

(29) f(x) = ax+ b

which is the subject of this class. That is, we are interested in the model

(30) Y = aX + b+ ϵ

where

(31) ϵ ∼ Normal(0, σϵ).

https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=qDKKEAeJXm87
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5.1. Working with regression. In Equation (30), X could be anything, but let’s
suppose X is drawn from a Normal distribution. This gives us the model

Y = aX + b+ ϵ(32)
X ∼ Normal(µx, σx)(33)

(technically this is not a regression model anymore because we specify the distri-
bution of X). Now that we have two random variables, we can ask questions like,
what is the joint distribution? what are the conditional distributions? What are
the Marginal distributions? Using properties of Normal random variables, we get

(34) Y ∼ Normal(aµ+ b,
√
a2σ2

x + σ2
ϵ )

This is the distribution of Y regardless of X; that is, it is the distribution we would
get if we randomly sampled Y values ignoring what the value of X is. What is
another name for this? This distribution can be understood visually [DRAW DIA-
GRAM ON BOARD].

X and Y are not independent. This can be seen visually. Note: even though
X and Y are not independent, we don’t say they effect each other. To see
why this terminology is problematic note that Y has no “effect" on X (it is
determined by X). However, what is X|Y = y?

Example 5. conditioning with continuous variables

5.2. Interpretation of regression parameters. The interpretation of parameters
in regression model is important. Sometimes (the example below) there is a clear
meaning in terms of conditional distributions, but suppose we have a model of our
time in a race as a function of the temperature:
(35) Y = aX + b+ ϵ

Let’s start with a: This is the average difference between times for races at tem-
perature which differ by 1. (we expect this should be negative). ϵ is the variation
around this average. Now what about b? The problem is that if we plug in X = 0
we obtain a nonsensical quantity, so really b does not have physical interpreta-
tion. This is common situation with regression models, and for this reason it is
sometimes advantageous to center X.

Exercise 5: Kid’s test scores

Exercise 6: The random walk

https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=LQe6xlfPbVJz&line=1&uniqifier=1
https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=3CXQuszHxsvn&line=19&uniqifier=1
https://colab.research.google.com/drive/1PPFwE4GUzsr707s3mPhGRs7-TYlHxND2#scrollTo=CGbybcoM8n6P&line=14&uniqifier=1
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