
STATISTICAL INFERENCE AND HYPOTHESIS TESTING

1. Estimators

• We have danced around the concept of statistical inference and parameter estimation for a bit. In particular,
when we talk about going between the world of data (e.g. sample means, histogram) and math (e.g.

expectation, density). Now we will make the relationship between these worlds more precise, beginning with

the simple Normal model:

Y ∼ Normal(µ, σ).
Statistical inference is the process of estimating the parameters (e.g. µ and σ) based on samples of

Y AND expressing our uncertainty in these estimates. The expressing the uncertainty part is what we

have not yet discussed formally.

• As we have already pointed out many times, in order to estimate parameter θ, we can use the following facts:

(1) Both µ and σ can be represented as means over the distribution of Y . For example θ = E[θ].

(2) If we have enough samples the sample average should be close to the actual average. That is,

1/N
∑N
i=1 f (Yi) ≈ E[f (Y )]. The central limit theorem tells us how accurate this estimate is.

In general, we will let θ̂ denote an estimator of a parameter θ from a sample if θ̂ is some function of our

sample which is meant to approximate θ. For example

µ̂ =
1

N

N∑
i=1

Yi

is an estimator of µ in the Normal model. It also happens to be the sample mean: µ̂ = Ȳ .

• θ̂ vs. θ Remember: the estimator is a function of the data. That is, θ̂ depends on the specific data we
collect or simulation we run. It is meant to approximation a parameter which µ does not depend on the data

and is (in classical statistics) a fixed number. For example, in the instance of a YES/NO survey or election

with two candidates, the “true” quantity we are interested in measuring is the fraction of people answering

YES to some question. Our estimate, q̂, is a variable which depends on the specific subset of the population

we sample.

1.1. Sample distribution and standard errors.

• Since θ̂ depends on the data, different replications of our sample will generate different values of θ̂. We can
therefore think of θ̂ as a random variable itself. We call the distribution of θ̂ over many replications of our

data the sample distribution. I will use replicate to mean different realizations of our data (as opposed to

the different samples within the data). The distinction is shown in Figure ?? (left panel). The terminology

gets a bit confusing: The sample distribution is the distribution of θ̂ over many replicates, but each replicate

involves many samples.

Example 1 (sample distribution of normal mean). Suppose

Y ∼ Normal(µ, σ)
Question: What is the sample distribution of µ̂ (our estimate of µ)?
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Figure 1. Replicates and samples

Solution:

µ̂ = Ȳ =
1

N

N∑
i=1

Yi

The CLT tell us (informally speaking) that

N∑
i=1

Yi ∼ Normal
(
µn, nσ2

)
where by ∼ we really mean “approximately distributed as”. Dividing by N,

µ̂ ∼ Normal
(
µ,
σ2

N

)
This assumes σ is known.

• A natural way to quantify the uncertainty in our estimate is the standard deviation of the µ̂ under the sample
distribution. We call the resulting quantity the standard error, which is our estimate of the standard deviation

of the sample distribution. For the Normal model, if we are estimating the mean and happen to know σ, then

(1) se(µ̂) =
σ√
N
.

This tells us how much our estimate will vary between different experiments (or surveys/simulations). Im-

portantly, the standard error depends on σ which we may not know!!! Thus, it is common to estimate the

standard error using an estimate of σ, σ̂, leading to an estimator of the standard deviation:

(2) se(µ̂) =
σ̂√
N
.

It should be clear from the context which one we are talking about: If we are working with data and we don’t

know what σ is, when we say standard error we mean Equation 2. If we are working with a particular model

where we have specified the parameters, we mean Equation 1.
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1.2. Bias and consistency.

• There must be some properties we would like the estimator to have. At a minimum, it should be in some
way informed by the data, in the sense that having more data should bring our estimate closer to the actual

value of the parameter. More precisely, the more data we have (e.g. the larger N) the closer we expect θ̂

to be to the true value θ. Of course, we must define what we mean by ”closer” when we are talking about

random things. For our purposes we will say θ̂ is consistent if

E[θ̂]→ θ and se(θ̂)→ 0 as N →∞.
This is saying that as we obtain more and more samples, the sample distribution because more concentrated

around θ.

• To see that consistency is not the only property we look for in an estimator, notice that since µ̂1 = µ̂+1/N
is also consistent, yet clearly seems inferior to µ̂. To this end, we say that an estimator θ̂ is unbiased for

some N (not just very large N), the average over the sample distribution is equal to the actual value under

the model distribution; that is,

E[θ̂] = θ.

Example 2 (Bias and consistency). For a normal random variable, define the following estimators of the

mean:

µ̂2 =
Y1 + Y2
2

Question: Is µ̂2 biased and consistent? what is the sample distribution?

Solution: Note that µ̂2 has the sample distribution

µ̂2 ∼ Normal(µ, σ/
√
2)

Example 3 (Normal standard deviation). Let now consider estimating the standard deviation of a Normal

random variable

Y ∼ Normal(µ, σ2)
Given samples Y1, Y2, . . . , Yn, it seems the natural way to estimate σ

2 is using

var(Y ) = E[(Y − E[Y ])2] ≈
1

n

n∑
i=1

(Yi − Y )2

we will call this estimator σ̂20. It turns out σ̂
2
0 is biased and in-fact

σ̂2 =
1

n − 1

n∑
i=1

(Yi − Y )2 =
n

n − 1 σ̂
2
0

is unbiased. The correction by a factor n/(n − 1) is called Bessel correction.

Question: Demonstrate with simulated data that σ̂20 is biased and σ̂
2 is not.

1.3. Confidence intervals.

• The idea of the confidence interval is, roughly speaking, to describe the range of values where we think the
actual value of θ might reasonable be given some estimate θ̂ and its sample distribution. We will mostly work

with the 95% confidence interval, or 95%-CI, which is given by

(3) [θ̂ − 1.96se(θ̂), θ̂ + 1.96se(θ̂)]
The factors 1.96 in front of the standard errors ensure that 95% of samples from the sample distribution will

fall in this range,
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Note that these samples from the sample distribution do not have the same distribution as θ̂ over replicates

of our data. Said another way, if we draw many samples from our estimate of the sample distribution, their

distribution will not be the same as the distribution of θ̂ we would obtain if we ran an experiment many times

and estimated θ̂ each time. The correct interpretation of the 95%-CI is as follows: If we generate many

replicates of the data then θ (the true value) will fall in the CI, for 95% of them.

Technically speaking, is is NOT the case that there is a 95% chance the true value of θ is in the 95%-CI.

To understand why, note that the parameter has a 95% chance to be in the interval

(4) [θ − 1.96std(θ), θ + 1.96std(θ)]
but this is difference from Equation 3, since we have replaced θ̂ with θ. The distinction, which is shown in

Figure 2, is important; however, you don’t need to get bogged down by the subtle differences in interpretation.

For practical purposes, you can pretty much thing of the 95%-CI as the region where the parameter value

is likely to be. We provide alternatives ways to think about these intervals when we discuss Bayesian vs.

classical statistics.
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Figure 2. An illustration of the distinction between Equation 4 (gray shaded region) and Equa-

tion 3.

Example 4 (Estimating CI). Imagine we are designing an experiment. Our model is a Normal distribution

and from previous experience, we have a ballpark estimate of the standard deviation, which is σ ≈ 0.1.

Question: Roughly, how many samples do we need to collect to have a 95% chance our estimate is within

0.1 of the actual value of the variable?

Solution: The standard deviation of an estimate based on n samples will have a confidence interval of

[µ̂− 0.196/
√
n, µ̂+ 0.196/

√
n]

The width of this interval is 2× 0.196/
√
n. This interval will intersect the true value in 95% of replicates, so

we would like it to have a width < 0.2. It follows that we need

1.962 = 3.8 < n

We can test this by running many replicates for each n, as done in the class notebook.

2. Maximum Likelihood

• Sometimes it is quite clear what the estimator for a parameter should be. This is the case for q in the Bernoulli
distribution. However, we will find this is not always the case, so it is useful to have a more systematic way

of finding estimators.

• Recall that the probability distribution for the binomial distribution is

(5) p(Y ) =

(
n

Y

)
qY (1− q)n−Y
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In statistics, we sometimes call this the likelihood and denoted P (Y ) = L(Y |q). The notation here is
suggesting that we think of P as a distribution which is conditioned on a particular value of the parameter.

More generally, the likelihood is defined as the probability we say a data set given the parameters. This

notation and terminology foreshadows Bayesian thinking, wherein one thinks of the parameter as random

variables themselves – more on this later.

• For now, notice that Equation (5) tells us how likely it is to observe k YES among n people surveyed. Then,
it seems reasonable that this number should not be very small, since that would mean our survey results

are an anomaly. More generally, the larger L(Y |q) is the more likelihood our results are. This suggests one
a way to estimate determine q: We can take as our estimate q̂ the value which makes L(Y |q) largest. In
other words, we are finding the value of q which makes the data the most likely, and we will call this the

maximum likelihood estimate.

• You can do this using calculus (if you know how, I suggest you give it a try) to determine that the value of
q which makes (5) largest is

q̂MLE =
Y

n

• For a Normal distribution with mean and variance µ and σ, the MLE estimators are the usual sample mean
and standard deviation which we have already been exposed to.

3. Hypothesis testing

• In statistics, we might infer parameters not because we are interested in specific values, but rather because
we would like to use them to make a decision. For example, in a clinical trial, we might be interested in

deciding whether a candidate drug is worth moving forward with. This problem is often framed in terms of

hypothesis testing, in which we assign a probability to a particular hypothesis or its converse.

• In rather abstract terms, the basic procedure of hypothesis testing is as follows:

(1) Come up with a null hypothesis. For example, this might be that the mean of some variable is zero. We

are interested in determining whether we can rule this hypothesis out.

(2) Compute something called a test statistic, denoted T̂ , which like any estimator is simply some quantity

we compute from our data.

(3) Next, we do a sort of probabilistic thought experiment and ask: What is the chance that we would

observe a value of T̂ at least as large as the value we measured IF our hypothesis was in-fact true. The

result is the p-value.

Example 5 (hypothesis testing for a clinical trial). Consider the example of a clinical trial. The effect of a

drug, denoted Y (e.g. blood pressure is measured in two groups) is measured in two groups. One group is

given a placebo, the other (the treatment group) is given a drug. Let X = 0 for people in the control group

and X = 2 for those in the treatment group. For simplicity we will assume that there are N/2 people in each

group. We can model Y with a regression model

Y |X ∼ Normal(µC(1−X) + µTX, σ2)

We will assume σ2 is know! This greatly simplifies the calculations! This is just a linear regression model

since we could write

µC(1−X) + µTX = µC + (µT − µC)X = β0 + β1X
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where

β0 = µC

β1 = µT − µC .

We could estimate β0 and β1 as we always do in a linear regression model. We could also simply perform

inference on the mean and of a Normal distribution within each group to obtain estimators of µC and µT .

For simplicity, let’s pretend σ is known for simplicity. This makes things simple, because then the sample

distributions are

µ̂C ∼ Normal
(
µ̂C ,

σ2

N/2

)
µ̂T ∼ Normal

(
µ̂T ,

σ2

N/2

)
.

Thus the (estimated) sample distribution of β1 is

β̂1 ∼ Normal
(
β̂,
4σ2

N

)
.

In this case, our null hypothesis will be that β1 = 0; that is, there is no effect of the drug. As our test

statistic, we measure how far β1 is from zero in standard deviations:

T̂ =
β̂1

se(β̂1)

Remember that since we know σ, se(β̂) is known and therefore, from the perspective of the sample distribu-

tion, this is just dividing by a constant. Now, let β̂∗1 be the random variable representing the measured effect

under the null hypothesis. Another way to say this is that β̂∗1 represents a measurement of β1 from a replica

generated under the assumption that β1 = 0. Therefore, β̂
∗
1 will have a distribution centered at zero and

with a standard deviation se(β̂1). This means the distribution of β̂
∗
1 is nothing but the sample distribution

shifted to zero, or

β̂∗1 ∼ Normal
(
0,
4σ2

N

)
At this point we can answer the question posed in step 3: If the null hypothesis was true, how likely would

we be to observe a value of T̂ larger than the one we did? This is determined by the p-value:

(6) pv = P (|T̂ ∗| > |T̂ ||T̂ )

where T̂ ∗ is the test statistic computed from β̂∗1 and the probability is taken over all the distribution of T̂
∗,

while T̂ is given by our data (hence why I use the conditioning notation). pv , like T̂ , is a function of the

data. See the python notebook were we compute pv with simulations.

• The above example is very simple because we assume that σ is known and we have only a binary predictor.
In reality, the computation of p-values is much more complex, however the principle and interpretation is the

same!

• Interpreting the p-value If the p-value is very small, then it is highly unlikely we would have observed what
we did when the null hypothesis was true. In this case, we can REJECT the null hypothesis as false. Usually

some threshold is set for this, and if the pv is below that threshold we say our result in statistically significant.

On the other hand, if pv is not small, it does not necessarily mean the null hypothesis is true. A result is

said to be statistically significant if pv < 0.05. Visually, we can see that β1 is statistically significant exactly

if 0 is not contained in the confidence interval!

• Relationship between p-values and confidence intervals. The p-value is all about the “tail” of the sample
distribution – “tail” usually just means the ends of the distribution. Naturally there is connection between

between p-values and confidence intervals, which also measure the width of the sample distribution. To

illustrate the connection, we will again assume σ is known. Since the the sample distribution can be obtained
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by shifting the distribution of β̂∗1 to β̂1, the p-value, pv , is exactly the chance of being outside the interval

[β̂1−|β̂1|, β̂1+|β̂1|]. Therefore, recalling the interpretation of confidence intervals, β̂1 will fall in the confidence
interval with probability pv when the null hypothesis is true. If σ isn’t known all this is only approximately

true, but intuition is still.

Figure 3. (left) The (two-sided) p-value and (right) the relationship between pv and the con-

fidence interval.
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