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1. Properties of Normal random variables

• Linear transformations of Normal random variables: Suppose

Z ∼ Normal(0, 1)

and define

X = σZ + µ

Then

P (X < x) = P (µ+ σZ < x)

= P

(
Z <

x − µ
σ

)
Hence

X ∼ Normal(µ, σ2).

• With this understanding of how to linearly transform a Normal random variable, we can see that the CLT
can be informally stated as

SN ≈ SCLT ∼ Normal(Nµ,Nσ2)

• More generally,
X ∼ Normal(µx , σx)

Now consider

Y = aX + b

At this point it should make sense that Y is also normal. but what are the mean and variance? Taking the

average of both sides,

E[Y ] = aµ+ b

and

var(Y ) = var(aX) + var(b)

Form the formula for variance, we know var(aX) = a2var(X). Also, var(b) = 0 So

Y ∼ Normal(aµx + b, a2σ2x ).

Note that in going from Z to X and X to Y , we are just multiplying and shifting everything. Think about

what this does to the histogram.
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• The process of going from X to Z is called standardizing. For any variable X the standardized variable is
defined as

Z =
X − µx
σx

Transforming X to a standard Normal is equivalent to measuring X in units of standard deviations.

For example, if we make a histogram of X, all this transformation does is change the X axis to units of

standard deviations from the mean.

• Combing normal random variables: Suppose

Y1 ∼ Normal(µ1, σ21)

Y2 ∼ Normal(µ2, σ22)

What is the distribution of X1 + X2? One way to see that this should be Normal is to note that Normal

random variables emerge form the CLT as sums over many (roughy) iid variables. Let’s say Y1 and Y2 are

respectively approximations to sums S1 and S2 over N1 and N2 terms. Let fX be the distribution of terms in

the first sum and fX ′ the second. Then, if we sample a random term from the N1 + N2 terms that make up

the sum S1 + S2, the chance that is was a sample from fX is N1/(N1 +N2). The chance it come from fX ′ is

N2/(N1 + N2). Therefore, it has a distribution which is

fX
N1

N1 + N2
+ fX ′

N2
N1 + N2

.

If we draw another sample from these N1 + N2 terms, its distribution will depend on the value of the first

sample we obtained. For example, if samples from fX are very likely to take on very large values and fX ′ , then

a large value of the first sample we drew will tell us there are probably now less of the terms from the first

sum in our list of N1 + N2 numbers. However, the distribution of S1 + S2 will still be approximately normal,

since as we already mentioned, these correlations are not that important. This is illustrated in Figure 1.

• We can summarize everything we learned above in the following result.

Theorem 1 (Special case of Theorem 4.6.1 in [1]). Let

X1 ∼ Normal(µ1, σ21)

X2 ∼ Normal(µ2, σ22)

be independent, then

aX1 + bX2 + d ∼ Normal
(
aµ1 + bµ2 + d, a

2σ21 + b
2σ22
)

2. Regression modeling

• Now we want to understand relationships between Normal random variables.

Example 1 (A taste of linear regression). Consider the following model:

X ∼ Normal(µx , σ2x )

Y |X ∼ Normal(β1X + β0, σ2)

Question: What is the marginal distribution of Y ? What is E[XY ]? How does this compare to E[X]E[Y ]?

Solution: We know that

Y |X = β1X + β0 + Z, Z ∼ Normal(0, σ2)
Thus, the marginal distribution of Y is the sum of two Normal random variables with mean and variance

(β1µx + β0, aσ
2
x ) and (0, σ

2) respectively. By Theorem 1,

Y ∼ Normal(β1µx + β0, β21σ2x + σ2)
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Figure 1. If we add two sums containing N1 and N2 terms respectively then the resulting sum

behaves similar to the sum over N1 + N2 variables whose distribution is a mixture of the two.

In particular, if we pick a random term from the sum, there is N1/(N1 + N2) chance for it to

follow the distribution of the first N1 terms (denoted fX in the figure) and an N2/(N1 + N2)

chance for it to follow the second distribution.

To compute E[XY ], we note that

E[XY |X = x ] = E[xY |X = x ] = xE[Y |X = x ]

therefore

E[XY ] = E[XE[Y |X]] = E[X(β1X + β0)] = β1E[X2] + β0E[X]
Using

E[X2] = var(X) + E[X]2 = σ2x + µ
2
x

Therefore

E[XY ] = β1σ
2
x + β1µ

2
x + β0µx

On the other hand,

E[X]E[Y ] = µx(β1µx + β0) = β1µ
2
x + β0µx

The difference between the two is the additional term β1σ
2
x , which we picked up from the variance of x .

• The example above motivates the definition of covariance

(1) cov(X, Y ) = E[XY ]− E[X]E[Y ]

Note that another way to write this is

E[(Y − E[Y ])(X − E[X)] = E[XY ]− 2E[X]E[Y ] + E[X]E[Y ] = cov(X, Y )

so if we replaced X with Y , this becomes the variance.
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• We can generalize the relationship between the covariance, slope (a) and variance of X (σ2x ) in Example 1
to any model of the form

X ∼ some distribution with mean µx and variance σ2x
Y |X ∼ Normal(β1X + β0, σ2).

(2)

Such a model is a linear linear regression model. The variable X is called the predictor and Y the response

variable. Recall that we can write E[X2] as

E[X2] = var(X) + E[X]2 = σ2x + µ
2
x .

Now for any linear regression model

E[XY ] = E[XE[Y |X]] = E[X(β1X + β0)] = β1E[X2] + β0E[X]

= β1σ
2
x + β1µ

2
x + β0µx

E[Y ] = β1µx + β0

so

cov(X, Y ) = β1σ
2
x

regardless of the distribution of X (assuming σ2x <∞). The intuition for this formula is given in figure 2.

Figure 2.

• A crucial observation is that the covariance allows us to relate the parameter β1 (the slope) in the model
above to averages over X and Y . In other words, it provides us with a means to estimate the slope from

samples (x1, y2), . . . , (xn, yn).

β1 ≈
∑n
i=1

(
xi − X̄

) (
yi − Ȳ

)∑n
i=1

(
xi − X̄

)2
The is what the function

¿ np.cov(x,y)[0,1]
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computes in Python. The reason for the [0, 1] is that the covariance function in numpy actually computes a

2D array (a Matrix), where the off diagonal entries are the covariance. The diagonal entries are the variances.

We can also estimate β0. Using E[Y ] = β1µx + β0 we have

β0 = E[Y ]− β1µx ≈ β̂0 = Y −

(∑n
i=1

(
xi − X̄

) (
yi − Ȳ

)∑n
i=1

(
xi − X̄

)2
)
X

2.1. Least square interpretation.

• Suppose we plot X and Y points in a place. Regardless of where these X and Y points come from (Normal
model or not), we can compute β̂1 and β̂0. These estimators are known as least squares estimators (note

that we haven’t formally defined what an estimator is) because it happens that these values minimize the

sum of the squared difference between our data points and the line âx + b̂. That is, they are the values that

make the residual sum of squares(RSS) smallest

RSS =

n∑
i=1

r2i , ri = Yi − (β̂1Xi + β̂0)

smallest. The R

Figure 3.

There are many other ways we could draw a line through a set of (x, y) points. This particular way of

estimating the slope – by minimizing RSS – happen to make sense under the assumption that the data is

sampled from a Linear regression model (Equation 2).

Example 2 (Marketing data). Here we consider the some on advertising budgets and sales for a company.

We will explore whether the budget for TV advertisements is associated with higher sales.

Questions: Fit the data to a linear regression model with the TV budget at the predictor and sales as the

response variable.

(a) Fit linear regression model: What are the estimates of β1 and β0?

(b) Visualize the data: Plot the regression long along with a scatter plot of the data.

(c) Accessing model assumptions: Using the fitted values of β1 and β0, simulate 10 “fake” data sets

which have the same number of points as the real data set and the same x values. Make plots of these

and compare to the real data.
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Solution: see colab notebook.
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