
EXERCISE SET 5

Exercise 1 (Car brands and mpg – ChatGPT use recommended): In this exercise we will consider the data

set containing information about cars and their miles per gallon. This can by loaded by

data = pd.read˙csv(”https://raw.githubusercontent.com/intro-stat-learning

/ISLP/main/ISLP/data/Auto.csv”,encoding = ”ISO-8859-1”)

data[”name”] = [name.split()[0] for name in data[”name”].values]

The second line takes the original names (which are the specific models – e.g. Toyota Yaris) and extracts only

the brand name (e.g Toyota). We are going to study which brands have the best mpg. Some brands tend to

make larger and heavier cars (e.g. pickup tricks) which will have worse mpg, but we want to understand how

brands compare within a certain type of car. To determine this we need to control for other factors, such as

the year and weight.

(a) Using all the columns except origin and displacement (since it’s not clear what the units are), write

down the regression model which you want to fit to this data to address the question posed in the

problem instruction. Assume there are no interactions. Provide an interpretation of each regression

coefficient in terms of differences in conditional expectation. You don’t need to list each brand, but

explain in general how the brand predictors are included and give their interpretation.

(b) Fit the regression model to the data. There are slightly different ways to break up the brands and I’ll

leave it to you to decide exactly how to handle special cases, like brands that are actually subsidiaries

of another, or the same brand marketed to different countries.

(c) What are the 5 best brands for mpg within the same type of car (weight, horsepower etc.).

Exercise 2 (Marginal regression in interactions model): Consider the probability model

X1 ∼ Normal(0, σ21)

X2 ∼ Normal(0, σ22)

Y |(X1, X2) ∼ Normal(β1X1 + β2X2 + β1,2X1X2, σ2)

(a) Derive the distributions of Y |X1 and Y |X2 Hint: These conditional distributions are both normal, so
you only need to determine the mean and variance to find the distributions, but either one can depend

on the predictor we are conditioning on.

(b) When does the probability model stated in the problem define regression models for Y vs. Xi , i = 1, 2?

That is, if we ignore one of the predictor variables do you obtain a single predictor linear regression

model for the other? Is that fact that the predictors have mean zero import here?

Exercise 3 (Predicting the residual plot based on interaction model): Suppose we have 200 data points generated

from the following model

X1 ∼ Uniform(−1, 1)
X2 ∼ Bernoulli(1/2)
Y |X ∼ Normal(4X1 − 2X2 + 4X1X2, 1/4)

The goal of this problem is to build your intuition about residual plots.

(a) Without actually fitting a regression, describe in detail the residual plot would look like if we fit this

data to a linear regression model with NO interaction term. To guide you through this process, here is

an outline of the general approach you’ll want to take:

• First, think about what the data looks like when X2 = 0 and X2 = 1 separately. In each case,
sketch the regression line and make note of how much variation there is around these lines to get

an idea of what the cloud of (Xi , Yi) points will look like.
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• Now consider what the fitted regression line will be based on this picture. What is a very rough
estimate of the slopes β̂1 and β̂2?

• To get a sense for what the residuals look like, take the difference between the true model and
this line.

(b) Confirm you answer with simulations.

Exercise 4 (Drug interactions – ChatGPT use recommended): Suppose that cancer cells from a live cell

biopsy are treated with 3 different drugs, A, B and C and all possible combinations of them. The present

of each drug is represented binary variables Xi ∈ {0, 1} with i ∈ {A,B, C}. The reduction in cancer cells is
measured by Y , the difference in mass before an after treatment. To model the effects of each drug and their

interactions, we use the regression model

Y = βAXA + βBXB + βCXC + βA,BXAXB + βB,CXBXC + βC,AXCXA + ϵ

(a) Suppose it is found that βA = −1, βB = 2, βC = 1.2, βA,B = 3, βB,C = −1 and βC,A = 2. Which
combination of drugs will optimize the reduction in tumor size? Hint: Ask ChatGPT to write python

code to generate all possible combinations of 3 binary numbers and put them in a numpy array.

(b) Write a function which generates simulated data from this model using the parameters above and

σ2ϵ = 1/4.

(c) Using the function you’ve written, determine how much data would be needed to get a p-value of less

than 0.005 on each of the regression parameters. Answer the same question for the model without the

interactions terms.

Exercise 5 (Bias variance trade-off): As we have seen, if we perform n independent Bernoulli trails X1 . . . , XN ,

our best estimate of q is q̂ = S/N where S =
∑N
i=1Xi . Laplace’s rule of succession is to use the estimate

q̂L =
S + 1

N + 2

The idea behind q̂L is that we assume it is possible for the coin to land on either heads or tails. Hence we

assume we have already seen two flips (the +2 in the denominator) and one is heads (the +1 in the numerator).

(a) Calculate the MSE of q̂L and decompose it into bias and variance.

(b) For what values of q does q̂L have a lower MSE? Does this make intuitive sense?

Exercise 6 (Regularization): Much like I did in class on 11/8 for the sample mean with ridge regression, in this

problem you will consider how adding different types of regulation influences the estimator

(a) Determine the regularized least squares estimator for the sample mean of N number with ridge regu-

larization centered at µ0, that is R(µ̂) = λ(µ̂− µ0)2
(b) Determine the regularized least squares estimator for the sample mean of N number with LASSO

regularization.

(c) For both of the above estimators, using simulations compute MSEµ̂ and plot it as a function of µ (you

decide what values to plot). Then plot the variance and bias separately.

Exercise 7 (Indicator basis functions): Consider the model

Y |X ∼ Normal

(
K∑
i=1

βiφi(X), σ
2

)
Suppose that X ∈ [0, 1) and define the intervals

Ii =

[
i − 1
K
,
i

K

)
Notice that

[0, 1) = I1 ∪ I2 ∪ · · · ∪ IK .
That is, each x in [0, 1) is in one of these disjoint intervals. Now introduce the basis functions

φi(x) =

{
1 x ∈ [(i − 1)/K, i/K)
0 x /∈ [(i − 1)/K, i/K)
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(a) In general, are φi orthogonal with respect to a random variable X taking values in [0, 1)? Does it

depend on the distribution of the random variable? Test your conclusion with simulations.

(b) Using statsmodels, implement fitting the model with these features. You can make up your sim-

ulated data set to fit, or copy the code I used in class to fit the fourier and polynomial models. I

recommend writing a function phi(x,i) which takes the array of predictors and outputs an array

[φj(X1), . . . , φj(XN)]. Use K = 10 and N = 100. ChatGPT use recommended

(c) (1 point EXTRA CREDIT added to HW score) As usual let β̂j be the fitted value of βj using least

squares, meaning the value that minimizes the squared residuals. Show that in this model β̂j is simply

the average value of Yi among data points where Xi ∈ Ij ; that is,

β̂j =
1

Nj

∑
i :Xi∈Ij

Yi

where Nj is the number of points in Ij .

Exercise 8 (Polynomial regression 1 point EXTRA CREDIT added to HW score): Consider the model

X ∼ Uniform(0, 1)

Y |X ∼ Normal

 K∑
j=1

φj(X), σ
2


where φj(x) = x

j .

(a) Calculate the correlation coefficient ρi ,j between φi(X) and φj(X). Hint: You will need to evaluate

expectations of the form E[Xn], which under the assumption that X is uniform on (0, 1) become
integrals

∫ 1
0 X

ndx = 1/(n + 1).

(b) For different values if i , plot ρi ,j this as a function of j . What do you notice? Comment on the

implications of this for the problem of inferring the true relationship between Y and X using a polynomial

model.


