EXERCISE SET 4

Exercise 1 (coefficient of determination and *p*-values): A regression model with two predictors. Fix the parameter values and the distribution of the predictors (e.g. take them both to be standard Normal). Let N denote the number of samples. Now suppose we simulated data sets with increasing N.

- (a) How do you expect the *p*-values to change as *N* increases? Test your answers by actually performing the experiment.
- (b) How do you expect R^2 to change as N increases? Again, test your answers by actually performing the experiment.
- (c) Briefly summarize (in your own words) what the implications of these observations are for how we should interpret p-values and R^2 .

Exercise 2 (Earnings data revisited): Consider the earnings data. This can be loaded with

df = pd.read_csv("https://raw.githubusercontent.com/avehtari
/ROS-Examples/master/Earnings/data/earnings.csv")

As in the previous exercise set, you will study the association between earnings and gender, but now using regression with multiple predictors.

- (a) Perform a linear regression using statsmodels with gender and height as predictors.
- (b) Provide interpretations for each regression coefficient (like we did in class for the test score example).
- (c) Which factor, height or gender is more important based on your analysis?
- (d) Based one the fitted model, predict the chance that someone who is not male and is 5.8ft earns more than a male who is the same height? To get a sense for the importance (or lack-thereof) of the height predictor, compare this to the chance that a male earns more than a non-male (regardless of height).

Exercise 3 (A binary and normal predictor): Consider the a linear regression model

$$Y|(X_1, X_2) \sim \operatorname{Normal}(\beta_0 + \beta_1 X_1 + \beta_2 X_2, \sigma^2)$$

where the two predictors obey

$$X_1 \sim \text{Bernoulli}(q)$$

 $X_2 | X_1 \sim \text{Normal}(bX_1, \sigma_{2,1}^2)$

You can assume $\beta_0 = 0$ for this problem.

- (a) Derive a formulas for $cov(X_1, X_2)$ and $var(X_2)$ in terms of the model parameters.
- (b) Derive formula for the marginal mean (μ_Y) and marginal variance (σ_Y^2) .
- (c) Derive a formula for $cov(Y, X_1)$ in terms of β_1 , q, β_2 and b.

EXERCISE SET 4

- (d) Explain how the formula you derived in part (b) is related to the equation for cov(Y, X₁) in the single predictor regression model (page 4 on week 3 notes). In particular, for what parameter values do the two formulas coincide? Your conclusion will be a particular case of what we saw to be true more generally (see week 5 notes) concerning the relationship between β₁ and the covariances in a regression model with two predictions.
- (e) The calculations in part (c) allows us to solve an exercise in Chapter 8 in Demidenko's textbook [1], albeit in the more restrictive context of a binary and normal predictor: Is it possible that β_1 and β_2 are **both negative**, yet the (marginal) slope of Y vs. X_1 is **positive**? If so, generate simulated data where this is the case.

Exercise 4 (Exercise vs. weight paradox): The following data has data concerning body weight as a function of exercises intensity.

df = pd.read_csv("https://raw.githubusercontent.com

/eugenedemidenko/advancedstatistics/master/RcodeData/simpson.csv")

You can check that if we perform a regression using exercise intensity as a predictor and body weight as our response variable, the results suggests that exercise increases body weight, counter to most of our intuition. Using a regression analysis with multiple predictors, try to reconcile this. Explain how this is related to exercise 3 above.

Exercise 5 (Sample distribution): In the colab notebook from class, there is code to generate samples from the sample distribution of $(\hat{\beta}_1, \hat{\beta}_2)$ in the model

$$X_1 \sim \text{Normal}(0, 1).$$

 $X_2 | X_1 \sim \text{Normal}(bX_1, 1 - b^2)$
 $Y | (X_1, X_2) \sim \text{Normal}(\beta_1 X_1 + \beta_2 X_2, \sigma^2)$

Specifically, we had a function which takes β_1 , β_2 and β_0 as inputs and returns a dataframe where the columns are the samples of $\hat{\beta}_1$ and $\hat{\beta}_2$ respectively. When we plotted the correlation coefficient as a function of *b* values and estimates the correlation coefficient between $\hat{\beta}_1$ and $\hat{\beta}_2$, it was a decreasing line.

- (a) The model is set up so that as we vary b, the correlation between X_1 and X_2 varies, but the overall (marginal) variance in X_2 remains fixed. Show this is true mathematically and then test it with simulations.
- (b) What would happen if instead of plotting the correlation coefficient, we plotted se(\(\heta_1\)) as a function of b? Would it increase? decrease? neither? Note that both X₁ and X₂ are standardized, so the distribution of X₁ values is not changed when we adjust b. In answering this question, you can either give a geometric intuition, or do a calculation. You should check your answer with simulations, but you still need to provide a detailed explanation.
- (c) Is it possible for se($\hat{\beta}_i$) to be large for all the predictors (measured relative to $\hat{\beta}_i$), yet still have a large (meaning close to one) value of R^2 ? If not, explain why. If so, for what parameter values does this happen? Run simulation(s) to support your answer.

References

[1] Eugene Demidenko. Advanced statistics with applications in R, volume 392. John Wiley & Sons, 2019.