Let's begin with the basic problem of estimating g from a sequence of
pervolition thinks
In this case, we have the probability maked
Son Brownial (NB)
We know that if we assume nothing about g, then
$$g = 5/N$$

But what does this were probabilitivity?
they assume in probabilitivity?
they assume in probabilitivity?
they assume the probability of g as a random variable are before we see the
dath.
We can then think of our model for S as a conditional model
 $g \sim Uniform (Ori)$
Silg $\sim Binomining(MB)$
In Baylestian statistics, the goal is to compute g/S
 $\frac{Baylestian}{P(A|B)} = \frac{P(B|A)P(A)}{P(B)}$
 $\frac{P(A|B)}{P(B)} = \frac{P(AnB)}{P(B)}$ or $P(AnB) = P(B|A)P(A)$
Important this holds for probability densities as well!

In the confext of Bennelli trials,

$$F(g|S) = P(S|g)F(g)$$
posterion
$$F(g|S) = P(S|g)F(g)$$

$$P(S)$$
posterion
$$F(g|S) = A \times g^{S}(1-g)^{N-S}$$

$$F(g|S) = A \times g^{S}(1-g)^{N-S}$$

$$F(g|S) = A \int_{S}^{S} g^{S}(1-g)^{N-S} = A \frac{(1+N-S)!(1+S)!}{(N+S)!}$$

$$F(g) = A \int_{S}^{S} g^{S}(1-g)^{N-S} = A \frac{(1+N-S)!(1+S)!}{(N+S)!}$$

$$F(g) = A \int_{S}^{S} g^{S}(1-g)^{N-S} = A \frac{(1+N-S)!(1+S)!}{(1+N-S)!(1+S)!}$$

$$F(g) = g^{S}(1-g)^{N-S}$$

$$F(g) = A \int_{S}^{S} g^{S}(1-g)^{N-S} = A \frac{(1+N-S)!(1+S)!}{(1+N-S)!(1+S)!}$$

$$F(g) = g^{S}(1-g)^{N-S}$$

$$F(g) = A \int_{S}^{S} g^{S}(1-g)^{N-S} = A \frac{(1+N-S)!(1+S)!}{(1+N-S)!(1+S)!}$$

$$F(g) = A \int_{S}^{S} g^{S}(1-g)^{N-S} = A \int_{S}^{S} g^{S}(1-g)$$

$$E[g|s] = \frac{s+1}{N+2} = \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{(2+\sqrt{2}(3+x))} = \int_{1}^{\infty} \frac{1}{(2+\sqrt{2}(3+x)$$

Libear Regression je from vidge vegrossion N posterior mean of regression Coefficients in Bayesim livern regression a/ nor-al prions