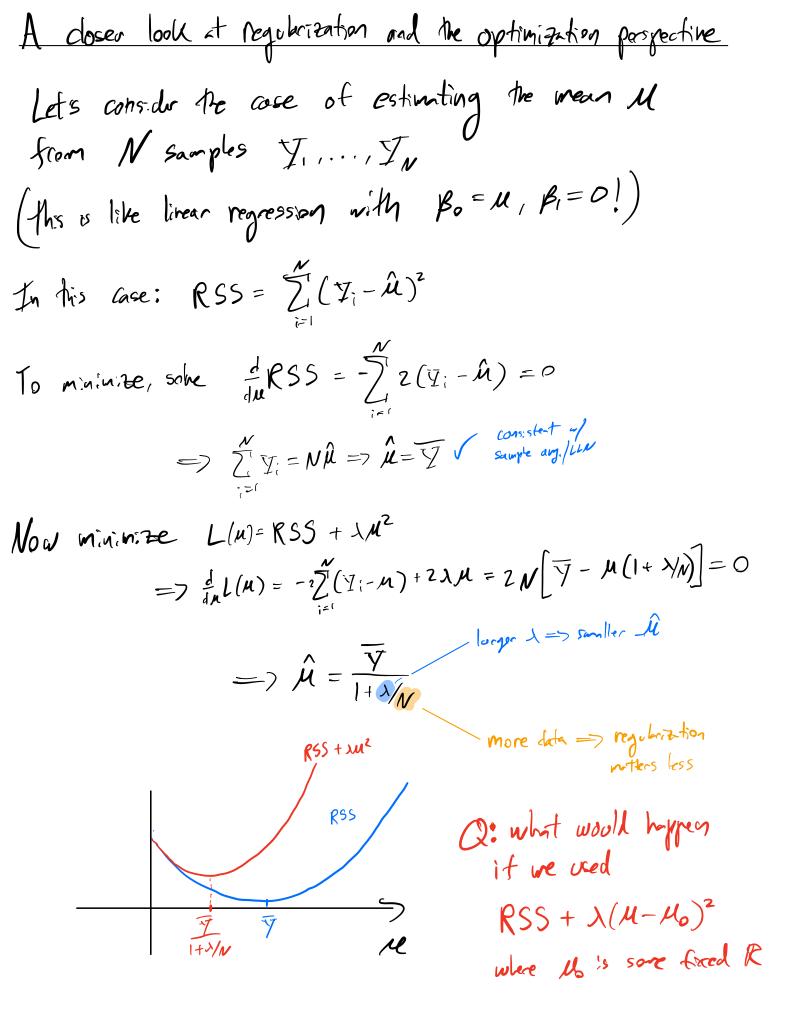
Regularization
Q: How do we desgo flexible models which do not
overfit the data?
Need to make some assumptions —> assumptions can be bas
No tree local
But, can still control variance in a highly flexible woodel
as follows: Take polynomial regression

$$Y = \sum_{i=0}^{K} B_{i} \times i + \varepsilon$$

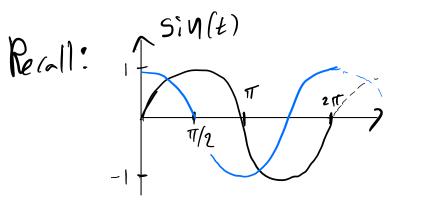
Observation: large K values make model flexible, but
also result in werg credic behavior when $K = N-1$
Regularization is the idea that we will control this
eradic behavior by unking B_{i} small
to implement this we return to optimization picture:
 β minimize $RSS = \sum_{i=1}^{N} (y_{i}, -\hat{y}(x_{i}, D))^{2}$

in python: OLS-regularized - see Section Z in Colab



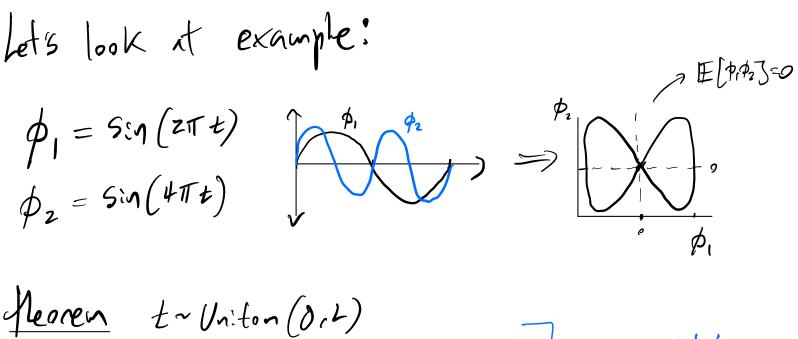
Fourner Model
let's consider data where time measurement are on'tornly
distributed on some interval [0,1]:
$$t \sim Uniform(0,1)$$
 here $t \equiv Uniform(0,1)$ here $t \equiv Unifor(0,1)$

$$\begin{split} & \underbrace{\forall} = \sum_{i} p_{j} p_{i}(t) + \alpha_{j} \gamma_{i}(t) + z \\ & \text{where } p_{j}(t) = \operatorname{Sin}(2\pi i \chi/L) \\ & \text{where } p_$$



hence
$$p_j$$
, V_j one
sin/con functions which
go through 1 cycle
on $(0, L/i)$

Clearly \$:, \$; don't have problem 3 what about problem D?



Then $\mathbb{E}\left[\phi_{i}(t)\phi_{j}(t)\right] = 0 \quad i \neq j$ $\mathbb{E}\left[\phi_{i}(t)\phi_{j}(t)\right] = 0 \quad i \neq j$

Mis Mans,

$$\beta_{i} = \frac{Gv(Y, p_{i})}{Var(p_{i})}, \quad \gamma_{i} = \frac{Gv(Y, \gamma_{i})}{Var(\gamma_{i})}$$