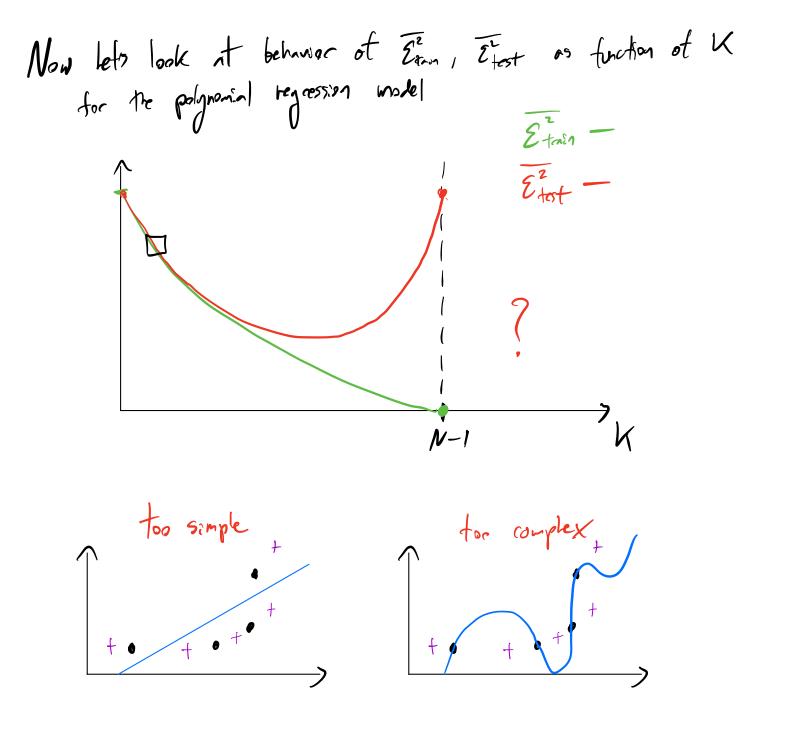
Goal: Understand issues that emerge when adding more complexity to models (focus on prediction for now) Easter to work w/ 1 predictor and complex y vs. X relationship than moltiple pandicitors -/ simple relationship between each X and X (as we have before)

How by shuld we make
$$K$$
?
previously we used $R^2 = I - \frac{RSS}{G_T^*}$, but $*/K=K-1$ we can
always make $R^2 = I$
Denumple
 $R^2 \times I$ complet based on R^2
 $R^2 \times I$ complet $R^2 \times I$
 $R^2 \times I$ complet based on R^2
 $R^2 \times I$
 $R^2 \times I$ complet based on R^2
 $R^2 \times I$
 $R^2 \times I$ complet based on R^2
 $R^2 \times I$ complet $R^2 \times I$
 $R^2 \times I$ complet based on R^2
 $R^2 \times I$ complet $R^2 \times I$
 $R^2 \times I$ complet $R^2 \times I$ complet $R^2 \times I$
 $R^2 \times I$

Also note that we can define

$$\overline{\mathcal{E}}_{\text{train}}^{2} = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} \left(\underline{Y}_{i} - \hat{y} \left(\underline{X}_{i}^{\text{train}} D^{\text{train}} \right) \right)^{2} \qquad \left[\begin{array}{c} q_{i} & 2.5 \text{ in } 151P \end{array} \right]$$

and notice



$$\frac{\beta_{3,8,2}}{\beta_{3,8,2}} = \frac{\beta_{2,8,2}}{\beta_{3,8,2}} = \frac{\beta_{2,8,2}}{\beta_{$$

Now to relate back to
$$\overline{\Sigma}_{test}^2$$
 Vs. $\overline{\Sigma}_{train}^2$ picture:
Suppose $y = f(x) = \mathbb{E}[Y|X=x]$ is true relationship between x and any. of Y
per $\hat{\Theta} = \hat{\gamma}(x, D)$ is estimator of $\Theta = f(x)$

$$\overline{E}_{test}^{2} = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} (\overline{Y}_{i} - \hat{\gamma}(X_{i}^{test} D^{test}))^{2}$$

$$\approx \mathbb{E}[(\overline{Y} - \hat{\gamma})^{2}] = \mathbb{E}[(\hat{F}(\overline{X}) + \varepsilon - \hat{\gamma}(\overline{X}, D))^{2}]$$

$$= \mathbb{E}[(f(\overline{X}) - \hat{\gamma}(\overline{X}, D))^{2} + 2S(\overline{X})\varepsilon - \varepsilon\varepsilon\hat{\gamma} + \varepsilon^{2}]$$

$$= MSE_{\hat{\gamma}} + \mathbb{E}[\hat{z}^{2}] = MSE_{\hat{\gamma}} + \overline{D}\varepsilon^{2}$$
Hence \overline{E}_{test}^{2} Almost approximates MSE of $\hat{\gamma}$, but since
we dow't know the true relationship tere is an extra $D\varepsilon^{2}$
This extra term is all of irreducible error
Nole when $K \approx N-1$ this relationship bracks down, but
it still give is an idea of all γ the come law of the upp
it does

