
EVALUATING MODEL PREDICTIONS, OVERFITTING AND OTHER MODELS

1 Learning objectives

• Cross validation and how to use it to perform model selection.
• Bias-variance decomposition of mean-squared error, and why it explains the U-shaped test error curve.
• Fourier series as linear regression models. Orthogonality and why it is important.

2 Cross validation

• R2 is not very helpful if we want to decide how complex we’d like to make our model, since it is possible
to explain all the variation in the Y values with a model which is too complex. The following example

illustrates this.

Example 1 (Models with very large numbers of parameters). Consider the model

Y |X ∼ Normal(f (X), σ2)

f (X) = 1−X2 + 0.9X3

This is a linear regression model with the features X1 = X
2 and X2 = X

3. We will pretend we have

some data from this model, but not only do we lack knowledge of the coefficients, we in-fact lack

knowledge of what the function f (X) is. This, we are going to fit the data to a polynomial regression

model

f (X) = β0 + β1X + β2X
2 + · · ·+ βKXK

The question is which value of K to select, since we don’t know a-priori that K = 3.

Question: How does the predicted function f (x), which we will denote f̂ (x) compare to the true

function? How does this depend on the number of features we include in our model?

Solution: See colab notebook.

• In order to address this, we take the approach of cross validation. The basic idea of cross validation is
to break our data up into two subsets: training set, which we use to fit the model, and a testing set,

which we compare to the predictions of the fitted model.

• Setup and Notation
– To illustrate the concepts we will assume that X is a scaler quantity and assume a model of the

form

Y |X ∼ Normal

 N∑
j=1

βjφj(X), σ
2


where φj(X) are some function (like the monomials in the example above).

– I will use D to refer to our entire data set:

D = (Y,X) = {(X1, Y1), . . . , (XN , YN)}

– Dtrain = (Y train, Xtrain) and Dtest = (Y test, Xtest) will represent the subsets of the data to be used

to training (that is, fitting) the model and testing the fit respectively. We will assume that

D = Dtrain ∪Dtest

Let Ntrain and Ntest denote the number of points in each group.
1

https://colab.research.google.com/drive/1ZxnQaeKdTP1_sjlj6UbMx9id9yoDe7ty?usp=sharing


2 EVALUATING MODEL PREDICTIONS, OVERFITTING AND OTHER MODELS

– Let ŷ(x,D) the prediction of E[Y |X = x ] using the fitted coefficients based on a data set D; that
is

ŷ(x,D) =

K∑
i=1

β̂iφi(x)

where β̂ are the (usually least squares) fitted coefficients using the data in D and φi(x).

• Now let us define the training error

ϵ2train =
1

Ntrain

Ntrain∑
i=1

(ŷ(Xtraini , Dtrain)− Y traini )2

where the average is taken over different replicates of our data and Ŷi is our prediction of E[Y |X]. Not
that the training error tells us about how well our model does at predicting the same data we used to

fit it, and therefore not surpisingly, it is closely related to R2:

R2 ≈ 1−
ϵ2train

var(Ytrain,i)
.

In order to see how well our model does at predicting the points we did NOT use to fit it, we

introduce the test error:

ϵ2test =
1

Ntest

Ntest∑
i=1

(ŷ(Xtesti , D
train)− Y testi )2

Note that the fitted coefficients used to compute ŷi(X
test) come from fitting the model to the training

data, even though we are evaluating ŷ at the test points.

Example 2 (Cross validation on polynomial model). Consider example 6 from the previous weeks notes.

Question: Plot the training and test error as a function of the number of parameters.

Solution: See colab notebook.

3 Bias, variance and overfitting

• In order to understand U-shaped curve seen in Example 2, we first need to introduce some more general
terminology and notation for talking about estimators (of which ŷ is an example). To this end, we

introduce the mean-squared error of an estimator θ̂ of some quantity θ. θ could be a parameter, or it

could be a value of a function, such as f (x), that we would like to predict.

(1) MSEθ̂ = E
[
(θ̂ − θ)2

]
For now, let’s just think of θ̂ as ANY estimator.

• The following theorem is the key result which will allow us to understand the U-shaped curve.

Theorem 1 (Bias variance decomposition).

(2) MSEθ̂ = var(θ̂) + E
[
θ̂ − θ

]2
Proof. Using the definition of variance

var
(
θ̂ − θ

)
= E

[
(θ̂ − θ)2

]
− E

[
θ̂ − θ

]2
.

Since θ is a constant, var
(
θ̂ − θ

)
= var

(
θ̂
)
, so rearranging terms yields the result. □

Now let’s break this result down a bit.

– The first term in Equation 2 is simply the variance, which in the case of an estimator of a parameter

we can recognize as the squared standard error. This is tell us how much variation there is in our

estimate from replicate of replicate. A consistent estimator is one for which this quantity vanishes

when N is very large.

https://colab.research.google.com/drive/1ZxnQaeKdTP1_sjlj6UbMx9id9yoDe7ty?usp=sharing


EVALUATING MODEL PREDICTIONS, OVERFITTING AND OTHER MODELS 3

– The second term is what we will define as the squared of the bias:

Biasθ̂ = E[θ̂ − θ].

This tells us whether our estimate will on average give us the correct value of θ. An unbiased

estimator is exactly one for which this quantity is zero.

• Now let’s return to working in the context of a model of the form

Y |X ∼ Normal(f (X), σ2)

where f (X) can be written as a linear combination of features

f (X) =

N∑
i=1

βiφi(X).

Letting θ̂ = ŷ(x,D), applying Equation 1 yields

MSEŷ(x,D) = E
[
(ŷ(x,D)− f (x))2

]
where the average is taken over replicates of our data D. This is a measurement of our ability to predict

f (x), which is exactly what the test error seeks to measure.

• To more closely relate the bias-variance tradeoff to the test error, we will use a slightly different
definition of MSE, which is

(3) M̃SEŷ(Xi ,D) = E
[
(ŷ(Xi , D)− Yi)2

]
where Y is a sample from Y |(X = x). You can show (see Exercise) that

M̃SEŷ(Xi ,D) = σ
2 + var(ŷ(Xi , D)) + E [ŷ(Xi , D)− f (Xi)]2

The new term, σ2, captures the fact that, unlike the deterministic term f , we can NEVER predict the

random variable Y exactly. It should make sense that

ϵ2test ≈ E
[
M̃SEŷ(X,Dtrain)

]
• The important thing to recognize is that a complicated model will tend to have a higher variance, since
it will be able to change more in response to data. Meanwhile, a very simple model will tend to have a

higher bias.

Example 3 (Plotting Bias and variance). Let’s continue with Example 2 and try to illustrate the bias

variance tradeoff by computing these (or really approximations to them) separately.

Solution: See colab notebook.

• We now summarize some observations we’ve made thus far:
– In a regression model, as we add more coefficients, eventually the model becomes more and more

“flexible”, in the sense that is can describe more different types of data sets. Here, by “describe”,

we mean that it can be fit to those data sets with a small value of R2 or training error. With

enough features, a model can perfectly interpolate between the data points, meaning ŷ(Xi , D) = Yi
for each data point (Xi , Yi) when the model is fit on all our data points.

– Unlike the training error and R2, the test error, ϵ2test does not simply increase as we make the

model more complex, rather it has a U-shape. Thus, there is a optimal model size at which our

model’s predictions of new data points – that is, data points outside the set we used to fit it – is

best.

– The U-shape can be understood in terms of bias and variance. We know this because the mean-

squared error, which is the “math world” version of ϵ2test, can be decomposed into a bias and

variance term. The variance term tells us how variable the predictions of our model will be when

we fit it to different training sets, while the bias tells us how much its predictions. will differ, on

average, from real data.

https://colab.research.google.com/drive/1ZxnQaeKdTP1_sjlj6UbMx9id9yoDe7ty?usp=sharing


4 EVALUATING MODEL PREDICTIONS, OVERFITTING AND OTHER MODELS

Figure 1. Bias and variance illustrated with fits to two different datasets (blue and red) drawn

the from the same distribution

4 Orthogonality and Fourier analysis

• It is often to our advantage to select basis function φi so that our predictors are not correlated. That
is, if φi(X) and φj(X) are thought of as random variables (the randomness comes from X) then we

want them to be uncorrelated.

• Throughout our discussion, we will assume that E[φi(X)] = 0. We can easily make this so by subtracting
the means of our features. Therefore, we would like to find φi such that

(4) E[φi(X)φj(X)] = 0 i ̸= j.
We this holds for some distribution of X, we say that φi and φj are orthogonal with respect to this

distribution.

Example 4 (Sin series). Let us now work with the particular example where

(5) X ∼ Uniform(−L, L).
Even if our X points are not random, but are say evenly spaced on the interval [−L, L], a random
sample from the uniform distribution will be statistical similar to some randomly selected evenly spaced

X points. Thus, we can think of the uniform distribution as approximating the spread of our X data

with a random variable.

Now consider the basis functions

φj(x) = sin

(
πxj

L

)
.

Question: Show using simulations that φj are orthogonal with respect to the uniform distribution on

[−L, L] (Equation 5).

Solution: See colab notebook.

• Notice that if φj are orthogonal, then we can express the regression coefficients as

βj =
cov(Y, φj(X))

var(φj(X))
=
E[Y φj(X)]

E[φj(X)2]

and hence our fitted coefficients from N data points can be approximated as

(6) β̂j ≈
∑N
i=1 φj(Xi)Yi∑N
i=1 φj(Xi)

2

This suggests β̂j should depend only weakly how many of the features φ we have included in our model!

This is consequence of orthogonality. In contrast, in the earlier example where we used polynomial

features adding a new predictor, say X4, would dramatically change the fitted value of β2. However,

https://colab.research.google.com/drive/1EYcMviowfsnsVe7vsUKlyzkNsddUiTau?usp=sharing


EVALUATING MODEL PREDICTIONS, OVERFITTING AND OTHER MODELS 5

• Now let’s return to Example 4. A limitation of this model is that it only permits us to model “odd
functions” that is, functions for which f (x) = −f (x), as each φj has this property. It is therefore
desirable to add addition features which permit this, but we’d like them to still be orthogonal. To this

end, we introduce a new set of features to the model given by the cosine functions:

cos

(
πxj

L

)
.

Our new model, called a Fourier series, is given by

f (x) = β0 +

K∑
i=1

βi sin

(
πix

L

)
+ αi cos

(
πix

L

)
where we are using αi to represent the coefficients of the cosine terms. Fourier series are on of the

most important models in data science and engineering. It can be proved that as K → ∞ we can
approximate essentially ANY function with a series of this form.

Example 5 (Working with Fourier series in python). Suppose we have data from the model with

f (x) = sin(3πx) + sin(10πx)

where Xi = (i − 1)/N (meaning the X points are evenly spaced in [0, 1].

Question: For different values of σ2, generate data from this model and fit it to a Fourier series with

K = 100 terms.

Solution: See colab notebook.

• The process of computing the coefficients β̂j and α̂j for the Fourier series is called a Discrete Fourier Transform.
Usually DFT refers to the cases where the Xi are equally spaced. In this case, the orthogonality con-

dition (Equation 4) is true is “data world”, not just “math word” – what I mean by this is that for

equally spaced data points.

To be precise, consider the predictor data on the interval [0, L] given by

Xi =
L(i − 1)
N − 1

for i = 1, . . . , N. Thus X1 = 0, X2 = L/N, X3 = 2L/N and XN = L. We could generate these points

with np.linspace. The following theorem tells us that the empirical, or sample covariance between

the sin features, is exactly zero for these predictors.

Theorem 2.
N∑
i=1

sin

(
2πjXi
L

)
sin

(
2πkXi
L

)
= 0 k ̸= j

• Often we want to summarize how different frequencies are represented in our data, but we don’t
particularly care about whether they come form the sin or cos terms. To achieve this, one uses the

power spectrum density, also known as the peridogram,

Pj = β
2
j + α

2
j .

The power spectrum density is a fundamental object in signal processing, and it essentially tells us how

“wobbly” a signal is.

Example 6 (Periodogram). Question: Compute the periodogram of the data generated in Example

?? and confirm the same periodogram can be generated with the periodogram function from the

scipy.signal library. This is neat and not often made point, that this fundamental structure from

signal processing is in fact coming from fitting a linear regression model with least square!!

https://colab.research.google.com/drive/1EYcMviowfsnsVe7vsUKlyzkNsddUiTau?usp=sharing


6 EVALUATING MODEL PREDICTIONS, OVERFITTING AND OTHER MODELS

Solution: See colab notebook.

https://colab.research.google.com/drive/1EYcMviowfsnsVe7vsUKlyzkNsddUiTau?usp=sharing

	Learning objectives
	Cross validation
	Bias, variance and overfitting
	Orthogonality and Fourier analysis

