
REGRESSION WITH MULTIPLE PREDICTORS

1 Learning objectives

• Understand how to interpret regression coefficients in models with multiple predictors
• Understand how adding predictors changes coefficients
• Be able to fit and interpret regression models with multiple predictors in statsmodels
• Understand the concept of collinearity and what happens when we have highly correlated predictors.

2 Multiple predictor linear regression

• The real power of regression comes when we work with models of the form

Y = β0 +

K∑
i=1

βiXi + ϵ(1)

ϵ ∼ Normal(0, σ2)(2)

where Xi is a set of K predictor variables. Alternatively, we can write

(3) Y |(X1 = x1, . . . , XK = xK) ∼ Normal

(
β0 +

K∑
i=1

βiXi , σ
2

)
You might see the shorthand,

(4) Y ∼ LR(X, β, σ2).

In these notes, our goal is to answer the following questions

(1) What are estimators of the parameters in this model?

(2) How do we interpret the regression coefficients βi?

(3) Precisely what are the assumptions we are making when we use a linear regression model?

(4) How do we determine if the model assumptions are valid?

Example 1 (Simulating and fitting a regression with two predictors). See colab notebook.

• The output from the regression with multiple predictors is basically the same as for single-predictor,
except now we have multiple rows for the difference regression coefficients. In each case, the interpre-

tation of the p-value and confidence intervals are nearly the same as they were for the single predictor

case. However, for the p-value, we need to remember that this is the p-value testing the hypothesis

that a particular predictor is zero. The F -statistic is used to test the hypothesis that all predictors are

zero, although I won’t go into much more detail because I don’t place a big emphasis on hypothesis

testing in this course.

• The interpretation of R2 is the same as before, except that now we are considering the ratio of the
variance conditioned on ALL predictors to the overall variation in Y ; that is,

R2 = 1−
∑
i r
2
i∑

i(yi − ȳ)2
≈ 1−

var(Y |X1, X2)
var(Y )

where in the multi-predictor case

(5) ri = Yi −

(
β̂0 +

m∑
k

β̂kXi ,k

)
.
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2 REGRESSION WITH MULTIPLE PREDICTORS

Figure 1. The function y(x1, x2)

2.1 Basic interpretation and estimation of the parameters

• In order to interpret the parameters, it’s easiest to work with just two predictors like we have in the
example above. The formula for the conditional expectation of Y is

(6) E[Y |X] = β0 + β1X1 + β2X2
where I’m using the shorthand

E[Y |X] = E[Y |(X1, X2)]

to mean the expected value of Y conditioned on both predictors.

Equation 6 is the equation for a flat surface in two dimensions:

(7) y = β0 + β1x1 + β2x2

A drawing of y is shown in 2.

• If we make a slice through the surface in the x1 direction and look it at from the side, we see a line
with slope β1 (and similarly for x2). This leads to the following interpretation of βi :

β1 is the slope of E[Y |X] vs. X1 for fixed X2.
Notice that in the statement above, even though we are conditioning on both variables, the slope β1 is

independent of which value of X2 we condition on. We can obtain the interpretation of β2 by flipping

the role of X1 and X2. The fact that is doesn’t matter which value of X2 (respectively X1) we have

conditioned on is one of the core model assumption of linear regression with multiple predictors, which

we do not encounter in the single predictor case. Another way of articulating it is to say: the “effect”

of X1 and X2 are not dependent on the other predictor’s value.
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Example 2 (Test scores). We will now work with a new example of Children’s test scores. To motivate

this, we can imagine we are interested in studying what factors determine children’s success in school

in order to effective design interventions which help students that are struggling. The predictors are

mother IQ and high school education. In this case, the model assumptions are saying that the association

between the mother’s high school education and test scores is not influenced by the mother’s IQ. that

is, If we compare two random children whose mothers have the same IQ, differ in whether they attended

high school, then the average difference between their test scores will not depend on the IQ of their

mothers, although the average magnitude of their test scores will depend on the mother’s IQ.

Question: Fit the data to a linear regression model with two predictors and answer the questions

(a) What are the regression coefficients and the interpretations?

(b) Based on this regression analysis, which factor, IQ or high school education do we believe is more

predictive of test scores?

(c) Overall, how well do high school education and IQ as methods do at predicting the test scores of

children?

(d) What is the chance a student whose mother has an IQ of 90 and did not go to high school does

better than a student whose mother has an IQ of 110 and did go to high school?

Solutions: We get the following output from statsmodels in the colab notebook:

¿ OLS Regression Results

¿ ==============================================================================

¿ Dep. Variable: y R-squared: 0.214

¿ ==============================================================================

¿ coef std err t P¿—t— [0.025 0.975]

¿ ------------------------------------------------------------------------------

¿ const 25.7315 5.875 4.380 0.000 14.184 37.279

¿ mom˙hs 5.9501 2.212 2.690 0.007 1.603 10.297

¿ mom˙iq 0.5639 0.061 9.309 0.000 0.445 0.683

¿

¿

(a) For the regression coefficients we find the follow:

– βhs ≈ 5.95. This means that among students whose mothers have the same IQ, a student
whose mother attended high school will, on average, have a score that is 5.95 points higher

than a student whose mother did not.

– βiq ≈ 0.56. This means that among students whose mother’s have the same high school
education (either they all attended or did not attend high school), the difference between

scores of students whose mothers IQ differs by one point is, on average, 0.56 points.

– β̂0 ≈ 26. Mathematically, this tells us the average score of students whose mother did not
attend high school and have zero IQ, but this is not a meaningful quantity since noone has

zero iq. We can therefore ignore it when it comes to interpreting the output.

(b) Clearly βhs is smaller, but we need to remember that are comparing quantities that have different

units. Xiq takes values from around 70 to 130, while Xhq is either zero or 1. What is actually more

useful is to compare how much a difference in one standard deviation of the predictor makes. For

example, βiqσiq is the average difference in test scores between students whose mothers have the

same high school education, but whose mother’s IQ differ by one standard deviation. To this end,

we can compute the following measures of effects

β̂hsσ̂hs ≈ 2.44

β̂iqσ̂iq ≈ 8.44.

https://colab.research.google.com/drive/1oIRgP_7-c5DGV1D2iz5nj406mZfJxUIG?usp=sharing
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The association between IQ and scores is actually larger. Note that the comparison is not perfect,

since Xhs is a binary variable, but it still gives us a generally idea of the effects.

(c) The R2 value is 0.214, so about 20% of the variation in test scores is explained by the variation

in high school education and IQ of mothers.

(d) In the colab notebook we calculate this to be about 25%.

2.2 Interpretation of regression coefficient: a deeper look

• We can express the regression coefficients explicitly in terms of conditional averages as

(8) β1 = E[Y |X1 = (x + 1), X2]− E[Y |X1 = x,X2].

Now let’s think about how the regression coefficients are related to covariance. One guess would be

that, just as in the single-predictor case, β1 is given by cov(Y,X1)/σ
2
x1 . After all, if we look a slice of

the 2D planer function y(x1, x2) along the x1 direction, we get the same slope for all x2. It stands to

reason that if we look at only the points in the x1-y plane our regression slope would be β1. However,

this argument assumes that when we change x1, x2 does not also change. This is best understood

with an example.

Example 3 (Test scores with multiple vs. single predictors). Here we will consider once again the

example of children’s test scores and compare using both predictors in the sample above to the results

we obtain we using only one predictor (high school education).

Question: What is the difference between the coefficient of Xhs when this is the only predictor and

the coefficient when Xiq is also used? How is the coefficient in the multiple predictor case related to

coefficient in the single predictor case?

Solution: When we performed the regression using only the mother’s high school education as a pre-

dictor, we obtained a coefficients of about β̂′hs ≈ 12 and β̂′0 ≈ 78 (i’ll use β′ indicate coefficients in the
single predictor model, as opposed to the multiple predictor model). The fitted model is

ŷ = 12Xhs + 78

while when also using Xiq as a predictor, the coefficient is about half that.

In the model with one predictor, the regression coefficient of 12 means that on average a student

whose mother went to high school will do 12 points better than one whose mother did not. That is,

we are predicting

E[Y |Xhs = 1]− E[Y |Xhs = 0] = β′hs ≈ 12
Let’s compare this to what we would predict in the model with two predictors. In that case, the average

test score of student whose mother went to high school is

ŷhs ≈ E[Y |Xhs = 1]
= E[β0 + βhs + βiqXiq|Xhs = 1]
= β0 + βhs + βiqE[Xiq|Xhs = 1]

≈ 6× 1 + 26 + 0.6X iq|hs
where

X iq|hs = sample average IQ of mother who attended high school ≈ E[Xiq|Xhs = 1]

On the other hand

ŷno−hs = 6× 0 + 26 + 0.6X iq,no−hs
where

X iq|no−hs = sample average IQ of mother who DID NOT attend high school ≈ E[Xiq|Xhs = 0]
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Thus, according to the model with two predictors, the average difference in test scores between the

hs and no-hs groups is

∆ŷhs = 6 + 0.6(X iq|hs −X iq|no−hs)
or written in terms of more probabilistic notation

E[Y |Xhs = 1]− E[Y |Xhs = 0] = βhs + βiq(E[Xiq|Xhs = 1]− E[Xiq|Xhs = 0])

We can compute X iq|hs − X iq|no−hs ≈ 10.3, which gives ∆ŷhs ≈ 12. Thus, we have calculated the
single-predictor regression coefficient from the multiple predictor case.

• The important thing is that the two predictors are not independent. If they were, then X iq|hs−X iq|no−hs
would be zero, and it would have to be that the coefficient of Xhs is the same in both cases. We

can generalize this to any model where X1 is a binary predictor to obtain a relationship between the

regression coefficient for β1 with and without the second predictor; that is,

β′1 = β1 + β2(E[X2|X1 = 1]− E[X2|X1 = 0])

where β′1 is the regression coefficient without using X2 as a predictor in our model.

• Now we will dig deeper into the underlying, math, with the goal of better understanding how the
relationship between predictors shapes the regression coefficients. A byproduct of this exploration

will be formulas for the regression coefficients in terms of covariances between the predictors, and

covariance between the predictors and the response variable. These formulas generalize the relationship

cov(X, Y ) = β1σ
2
x , which we discovered to hold in the single predictors case.

Figure 2. Here I’m illustrated the difference between the marginal regression slope (the slope

of E[Y |X1] vs. X1) and the regression coefficient β1 in the two predictor model. I use the
notation of Example 4, although the idea applies more generally. When we increase x1 by 1

without fixing X2, then on average X2 changes by b (which is the slope between x1 and x2
here, not the intercept.) Therefore, in order to relate this marginal slope to the regression

slooe β1, subtract the increase in Y that is caused by the increase in X2 (corresponding to the

vertical blue arrow).

• Consider a generic linear regression model with two predictors. We will set β0 = E[X1] = E[X2] = 0
for simplicity, since these cancels out in the end. We start by computing cov(X1, Y ), which is simply

E[X1Y ] since E[X1] = E[Y ] = 0. Just as we did for the single-predictor case (week 3), we write

cov(X1, Y ) = E[X1Y ] = E[X1E[Y |X1]]

= E[X1(β1X1 + β2X2)] = β1E[X
2
1 ] + β2E[X1X2]

= β1σ
2
x1 + β2cov(X1, X2)
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where we have used that, since E[X1] = E[X2] = 0, var(X1) = E[X
2
1 ] and cov(X1, X2) = E[X1X2]. If

we do the same for X2, we get two equations

cov(X1, Y ) = β1σ
2
x1 + β2cov(X1, X2)

cov(X2, Y ) = β2σ
2
x2 + β1cov(X1, X2)

As with the single-predictor case, it is very useful to represent β1 and β2 as expectations which can

be computed as averages over our data points. In addition to providing some insight into the meaning

of the regression coefficients, this will yield candidates for our estimators of these quantities. Since

everything in the equation can be represented as a some sort of expectation except the coefficients β1
and β2, we just need to solve for these coefficients. Solving the linear system[

cov(X1, Y )

cov(X2, Y )

]
=

[
σ2x1 cov(X1, X2)

cov(X1, X2) σ2x2

] [
β1
β2

]
yields[

β1
β2

]
=

[
σ2x1 cov(X1, X2)

cov(X1, X2) σ2x2

]−1 [
cov(X1, Y )

cov(X2, Y )

]
=

1

σ2x2σ
2
x1 − cov(X1, X2)2

[
σ2x2 −cov(X1, X2)

−cov(X1, X2) σ2x1

] [
cov(X1, Y )

cov(X2, Y )

]
After using the formula for the inverse of 2× 2 matrix, we obtain

β1 =
cov(X1, Y )σ

2
x2 − cov(X2, Y )cov(X1, X2)

σ2x2σ
2
x1 − cov(X1, X2)2

(9)

The formula is particularly revealing if all the variances are set to one

β1 =
1

1− ρ21,2
(ρ1 − ρ1,2ρ2)

where ρ1,2 is the correlation coefficient between X1 and X2. Notice that if X1 and X2 are uncorrelated

(ρ1,2 = 0), we obtain the usual connection between the regression coefficient and the correlation

coefficient between X1 and X2.

Example 4 (Correlated predictors). Consider the model

X1 ∼ Normal(0, 1)

X2|X1 ∼ Normal(bX1, 1− b2)

Y |(X1, X2) ∼ Normal(β1X1 + β2X2, σ2).

Question:

(a) Show that var(X1) = var(X2) = 1 and cov(X1, X2) = b

(b) Expression β1 as a function of b.

(c) Test Equation 9 with simulations.

Solution:

(a) By definition of the model var(X1) = 1 and

var(X2) = b
2var(X1) + 1− b2 = b2 + 1− b2 = 1

cov(X1, X2) = bvar(X1) = b

(b) We can write Equation 9 as

β1 =
cov(X1, Y )− cov(X2, Y )b

1− b2

(c) See colab notebook.

https://colab.research.google.com/drive/1oIRgP_7-c5DGV1D2iz5nj406mZfJxUIG?usp=sharing
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• This can all be generalized to the situation where we have many predictors. The general formula for
the regression coefficient in terms of expectation is

βi = E[Y |X1, . . . , Xi−1, Xi = xi + 1, Xi+1, . . . , XK ]
− E[Y |X1, . . . , Xi−1, Xi = xi , Xi+1, . . . , XK ]

Note how this is a very natural extension of Equation 8. We get a more complex expression for the

coefficients but the idea is the same.

3 Collinearity

• The sample distribution of coefficients Just as before, we want to understand what the sample
distribution of the coefficients looks like. In the multiple predictor case, we need to think about the

joint distribution of (β̂1, β̂2, . . . , β̂M). We will start by focusing on the two predictor case.

Figure 3. (top) In the single-predictor case, the width of the sample distribution measures

how confident we are of a particular slope. It will be narrow if a replicate of our data is likely

to produce a very similar slope. These means we get a rough idea of the width of sample

distribution by seeing much we can change our regression line and still obtain something that

appears to pass through our data. (bottom) In the two predictor case, we have a regression

plane and changing β1 and β2 will “wiggle” the plane by tilting it in the x1 and x2 directions

(there is also the intercept which can shift the plane up and down, but I’m not illustrating that).

If X1 and X2 are uncorrelated, it doesn’t matter which way we wiggle it, the fit will be similar,

but if X1 and X2 are strongly correlated, wiggling the plane in the direction perpendicular to

the points has a much smaller effect that parallel to them.

Example 5 (Predictor sample distribution). Consider the model in 4. Let’s look at the sample distri-

bution by fitting many simulated replicates.

Question: Write a function to generate a dataframe containing samples from the sample distribution

of (β̂1, β̂2). Make a scatter plot and explore the structure of the sample distribution, in particular it



8 REGRESSION WITH MULTIPLE PREDICTORS

dependence on b, which controls the correlations between X1 and X2.

Solution: See colab notebook

To better understand what is going on, imagine X1 and X2 are very highly correlated (if they are

perfectly correlated we say they are colinear). We can then write

Y = β1X1 + β2X2 + ϵ ≈ β1X1 + β2X1 + ϵ
≈ (β1 + β2)X1 + ϵ

There are many ways to select β1 and β2 so that the surface β1x1 + a2β2 is close to the lines, since a

change in β1 can be compensated by a change in β2. This means that if we estimate β1 and β2 and

then generated new data, it would be possible to get a VERY different value of β̂1 and β̂2, so

long as β̂1 + β̂2 is close to what we got before. This is illustrated in Figure 3 and Figure 4.

Figure 4. Different views of the data in the case when X1 and X2 are correlated. If we look at

the data from the side, or along the X1 = X2 direction, then all our regression planes appear

similar; however, when looked at from the “front” as shown in the right panel, we see that the

places actually have very different slopes in the other direction.
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